
YouTube offers a fascinating num-
ber of how-to movies that cover
various topics. Whether you

want to see amateur chefs cooking their
favorite dishes, handymen demonstrat-
ing their lock-picking skills, or practi-
cally inclined car owners repairing their
vehicles, YouTube almost always has a
movie to match your interests.

After shooting the video, you will
want to add the opening credits. Ama-
teur moviemakers can always afford to
take a couple of seconds to tell their au-
dience a little bit about the coming at-
traction. To do so, you could use some
proprietary Windows program like
Adobe Premiere or a Mac program like
iMovie or Final Cut, or you could even

go for a Linux application like Cinelerra.
However, instead of using these 800-
pound gorillas, I’m going to take a quick
but clean command-line approach with
the help of a small Perl script that relies
on two external sound and video help-
ers: sox and mencoder.

Framed
Movies are made up of individual im-
ages played in quick succession known
as frames. Normal video cameras cap-
ture about 30 frames per second, and a
program like mplayer will play the
frames back at a fixed rate. A stationary

An instructional video looks far more professional if you add opening

credits. The Mencoder and Sox tools help you handle finicky formats,

and a Perl script automates the process. By Michael Schilli

Perl script as a cutter

opening credits

K
iy

osh
i Ta

ka
h

a
se S

eg
u

n
d
o, 12

3
R

F

Needed to change the title

because "Final Cut" is the name

of the Apple software. Please

try to accommodate this longer

title. Thnx - rls

Perl: Mencoder and SoxProgramming

70 ISSUE 111 February 2010

video title is easily converted from a se-
ries of identical JPG images to an AVI file
with the use of Mencoder. If you then
concatenate the two video files, you get
a movie with opening credits – at least in
theory. In real life, you can expect a cou-
ple of pitfalls.

What’s a Codec?
Multimedia files in the AVI format act as
containers for video and audio streams,
both of which are played back simulta-
neously by a video player. Both the
video and the audio files in an AVI con-
tainer can be saved in a variety of for-
mats. The audio track typically uses the
fairly raw PCM format or is compressed
as an MP3 file.

Video data requires a comparatively
huge amount of memory, as you can
easily imagine, given that you have 30
image files for every second of video.
This also explains why the encoding
method, or codec, is so crucial: A good
codec can compress the data to a great
extent without compromising the image

quality. Among the co-
decs available, many are
patented.

Although an AVI con-
tainer can hold a variety
of encoded video and
audio files, you can’t sim-
ply change the encoding
method midstream. In
other words, to concate-
nate the credits and a
video file, you have to
make sure that both use
the same codecs from the
start, or you at least need
to use a tool like men‑
coder to convert the dif-
ferent encodings to the
same output format.

Cameras Compared
Figure 1 is a listing of the metadata that
was parsed from two video files by the
program in Listing 1. The program uses
the CPAN Video::FrameGrab module’s
meta() method to retrieve the video
file’s characteristics, then it stores them
in a hash.

Figure 1 compares the metadata from
two movies, coolpix.avi and camcorder.
avi. The first movie was shot with a
small pocket camera, a Nikon Coolpix
S52, and the second movie was shot
with a digital camcorder by Canon, an
Elura 100. Both cameras shot the movie
at around 30 frames per second (video_
fps), but the Canon recorder used the
ffdv codec (see the video_codec field),
whereas the Nikon used ffmjpeg.

The two cameras also used different
formats to store the audio data. Whereas
the camcorder used two channels (for
stereo; the number of channels in audio_
nch is 2), the Nikon only supports mono
(audio_nch is 1). The audio quality is
also different, with the camcorder using
a sampling rate of 32,000 samples per
second for the recording (audio_rate
field), compared with the Nikon’s 8000
samples per second.

Figure 1 also shows that the Nikon,
with an audio_rate of 8000, has an
audio_bitrate of 64000 (which is the
total memory requirement in bits per
second). Each sample is thus 8 bits,
which results in a so-called “sample
size” of exactly 1 byte. The camcorder,
in comparison, uses a 32-bit (1,024,000
divided by 32,000) sample rate, which

results in 16 bits per channel and a sam-
ple size of 2 bytes.

As you can see from this data, these
silent opening credits can’t simply be
glued onto a video shot with an un-
known camera without some kind of
conversion taking place. Fortunately, the
Mencoder and Sox tools provide the
functions you need to modify the differ-
ent formats and thus allow the credits
and the movie to coexist peacefully in
the AVI container.

Mencoder for Joe Public
Users encountering Mencoder com-
mands for the first time are typically
scared off by its apparent complexity.
Even the most simple of functions seems
to require a totally absurd combination
of options. On closer inspection, Men-
coder isn’t that hard to use: To convert a

Figure 1: Metadata from two videos. Top,

Nikon Coolpix S52; bottom, Canon Elura 100.

Figure 2: Scripted opening credits running in MPlayer before

the main feature.

01 �#!/usr/local/bin/perl ‑w

02 �use strict;

03 �use Data::Dump qw(dump);

04 �use Video::FrameGrab;

05

�06 �my ($file) = @ARGV;

07 �die "usage: $0 file"

08 � unless defined $file;

09

�10 �my $grabber =

11 � Video::FrameGrab‑>new(

12 � video => $file);

13

�14 �my $meta =

15 � $grabber‑>meta_data();

16 �print dump($meta), "\n";

Listing 1: video-meta

ProgrammingPerl: Mencoder and Sox

71ISSUE 111February 2010

video file to another format, Mencoder
expects the first file as the first argu-
ment, followed by the conversion action,
followed by the ‑o switch, followed by
the output file, as in:

mencoder input.avi [options] U

 ‑o output.avi

Also, you can easily create a single out-
put file from multiple input files by en-
tering the file names one after another at
the command line in place of input.avi
(input1.avi, input2.avi, ...).

Two groups of conversion options
exist for audio and video components.
To pass the audio stream from the input

file to the output file without any modifi-
cation, you would just write ‑oac copy (a
for audio). If you want to recode the
audio track, you would type ‑oac pcm for
PCM format (Pulse Code Modulation) or
‑oac mp3lame for an MP3 format created
by the Lame MP3 encoder. If the encoder
you use (Lame in this example) also
needs some options, such as vbr 3, you
just add them to the Mencoder com-
mand line with the help of the ‑lameopts
option:

‑oac mp3lame ‑lameopts vbr=3

A similar approach is used for the video
component of an AVI file. To copy the

video format without change, just use
‑ovc copy (with v for video). To recode
the video format to MJPEG format and
pass in an option of vcodec=mjpeg to
the encoder, enter ‑ovc lavc ‑lavcopts
vcodec=mjpeg at the Mencoder com-
mand line. Armed with this knowledge,
you should be able to transform any
video from one format to another with
little trouble.

Perl Automation
The credits generator in video‑title‑add
(Listing 2) expects three parameters: the
video file to which you will be adding
the credits and two strings that are used
as the first and second lines in the open-

	 Listing 2: video-title-add	 Listing 2: video-title-addListing
001 �#!/usr/local/bin/perl ‑w

002 �use strict;

003 �use Sysadm::Install qw(:all);

004 �use Imager;

005 �use Imager::Fill;

006 �use Log::Log4perl qw(:easy);

007 �use Video::FrameGrab;

008 �use File::Temp

009 � qw(tempdir tempfile);

010

�011 �sub shell;

012

�013 � # length in seconds

014 �my $title_length = 2;

015 �my $FONT_FILENAME =

016 � "/usr/share/fonts/truetype/"

017 � . "ttf‑bitstream‑vera/"

018 � . "VeraSe.ttf";

019

�020 �Log::Log4perl‑>easy_init(

021 � $ERROR);

022

�023 �my ($video_file, $upper,

024 � $lower) = @ARGV;

025

�026 �die "usage: $0 ", "vidfile ",

027 � "upper_text lower_text"

028 � unless defined $upper;

029

�030 �(my $video_out =

031 � $video_file) =~

032 � s/(\.[^.]+$)/‑withtitle$1/;

033

�034 �my $video_mum =

035 � throwaway_file(".avi");

036 �my $video_title =

037 � throwaway_file(".avi");

038 �my $audio_title =

039 � throwaway_file(".wav");

040 �my $audio_total =

041 � throwaway_file(".wav");

042

�043 �my $grabber =

044 � Video::FrameGrab‑>new(

045 � video => $video_file);

046

�047 �my $meta =

048 � $grabber‑>meta_data();

049

�050 �my $height =

051 � $meta‑>{video_height};

052 �my $width =

053 � $meta‑>{video_width};

054

�055 �my $dir = jpeg_dir_create(

056 � $width, $height,

057 � $upper, $lower,

058 � $meta‑>{video_fps} *

059 � $title_length);

060

�061 �shell qw(mencoder ‑nosound),

062 � "mf://$dir/*.jpg",

063 � qw(‑mf fps=30 ‑o),

064 � $video_title,

065 � qw(‑ovc lavc ‑lavcopts

066 � vcodec=mjpeg);

067

�068 �my $sample_size =

069 � $meta‑>{audio_bitrate} /

070 � $meta‑>{audio_rate} /

071 � $meta‑>{audio_nch} / 8;

072

�073 �silent_wav(

074 � $title_length,

075 � $audio_title,

076 � $meta‑>{audio_rate},

077 � $meta‑>{audio_nch},

078 � $sample_size

079 �);

080

�081 �shell qw(mplayer ‑vc null

082 � ‑vo null ‑ao pcm),

083 � $video_file;

084

�085 �shell "sox", $audio_title,

086 � "audiodump.wav", "‑o",

087 � $audio_total;

088

�089 �shell "mencoder", "‑nosound",

090 � $video_title, $video_file,

091 � qw(‑ovc lavc ‑lavcopts

092 � vcodec=mjpeg ‑o),

093 � $video_mum;

094

�095 � # add sound

096 �shell "mencoder", $video_mum,

097 � qw(‑oac copy

098 � ‑audiofile), $audio_total,

099 � qw(‑ovc copy ‑o),

100 � $video_out;

101

�102 �#############################

103 �sub throwaway_file {

104 �#############################

105 � my ($suffix) = @_;

106

�107 � my ($fh, $file) =

108 � tempfile(

109 � UNLINK => 1,

110 � SUFFIX => $suffix,

111 �);

112 � return $file;

113 �}

114

Perl: Mencoder and SoxProgramming

72 ISSUE 111 February 2010

ing credits of the video track. If you call
the generator with the parameters

video‑title‑add testvideo.avi U

 "The Geek" "Breeding and Care"

it will create a new .avi file called test
video‑withtitle.avi that gives you two
seconds of opening credits before the
main feature, as shown in Figure 2.

The script starts by calling the jpeg_
dir_create function, defined in Listing 2
beginning with line 127, which creates
$n identical JPG images with a width of
$w and a height of $h in a temporary di-
rectory. The images show the text lines
passed in as $upper and $lower on a

black background. All told, a two-second
video with a frame rate of 30 frames per
second requires exactly 60 images; the
main program thus sets $n to 60.

The script then uses the CPAN Imager
module to create a new Imager image
object with dimensions of $w by $h. It
defines the color black as an
Imager::Color class object, which it ini-
tializes with an RGB value of 0‑0‑0. The
path stored in the $FONT_FILENAME
variable points to a TTF file with the re-
quired font and can be modified to re-
flect your local environment as needed.

The font object’s align() method takes
a character string and draws it at a pre-
defined position in the image. The center

directive aligns the string around the
middle of the x-axis. The first call to
align() draws the $upper line about one
third of the screen height from the top;
the second call draws $lower two thirds
of the way down the screen. The JPG
image, created by a subsequent call to
write(), is then stored in a temporary di-
rectory created for this purpose. The for
loop in line 184 adds 59 hard links point-
ing to the c.jpg file that was just created.
This fools Mencoder in line 61 into
thinking that it has 60 files in this direc-
tory, although only the space for one is
actually occupied. The codec used here
is mjpeg, because the little Nikon camera
uses it, and the quality of the glued-to-

	 Listing 2: video-title-add	 Listing 2: video-title-addListing
�115 �#############################

116 �sub shell {

117 �#############################

118 � my ($stdout, $stderr,

119 � $rc) = tap @_;

120

�121 � if ($rc) {

122 � die "@_ failed: $stderr";

123 � }

124 �}

125

�126 �#############################

127 �sub jpeg_dir_create {

128 �#############################

129 � my ($w, $h, $upper,

130 � $lower, $n)

131 � = @_;

132

�133 � my $img = Imager‑>new(

134 � xsize => $width,

135 � ysize => $height

136 �);

137

�138 � my $black =

139 � Imager::Color‑>new(0, 0,

140 � 0);

141 � $img‑>box(

142 � color => $black,

143 � filled => 1

144 �);

145

�146 � my $font =

147 � Imager::Font‑>new(

148 � file => $FONT_FILENAME)

149 � or die Imager‑>errstr;

150

�151 � $font‑>align(

152 � string => $upper,

153 � size => 38,

154 � color => "white",

155 � x => $width / 2,

156 � y => $height / 3,

157 � halign => "center",

158 � valign => "center",

159 � image => $img

160 �);

161

�162 � $font‑>align(

163 � string => $lower,

164 � size => 38,

165 � color => "white",

166 � x => $width / 2,

167 � y => $height * 2 / 3,

168 � halign => "center",

169 � valign => "center",

170 � image => $img

171 �);

172

�173 � my ($dir) =

174 � tempdir(CLEANUP => 1);

175

�176 � my $img_file =

177 � "$dir/c.jpg";

178

�179 � $img‑>write(

180 � file => $img_file)

181 � or die

182 � "Cannot write ($!)";

183

�184 � for (1 .. $n ‑ 1) {

185 � cd $dir;

186 � (my $link = $img_file)

187 � =~ s/\./$_./;

188 � link $img_file, $link

189 � or die $!;

190 � cdback;

191 � }

192

�193 � return $dir;

194 �}

195

�196 �#############################

197 �sub silent_wav {

198 �#############################

199 � my ($secs, $outfile,

200 � $rate, $channels,

201 � $sample_size) = @_;

202

�203 � my ($fh, $tempfile) =

204 � tempfile(

205 � UNLINK => 1,

206 � SUFFIX => ".dat"

207 �);

208

�209 � print $fh

210 � "; SampleRate $rate\n";

211 � my $samples =

212 � $secs * $rate;

213

�214 � for (my $i = 0 ;

215 � $i < $samples;

216 � $i++) {

217 � print $fh

218 � $i / $rate, "\t0\n";

219 � }

220 � close $fh;

221

�222 � shell "sox", $tempfile,

223 � "‑r", $rate, "‑u",

224 � "‑$sample_size", "‑c",

225 � $channels, $outfile;

226 �}

ProgrammingPerl: Mencoder and Sox

73ISSUE 111February 2010

gether movie will suffer if I convert one
lossy encoding method into another.

Sound of Silence
The credits created by Mencoder in line
61 do not have a soundtrack right now; I
have not assigned an audio signal to the
JPG images, and I told Mencoder to stop
complaining about this
by setting the ‑noaudio
option. Unfortunately, I
can’t glue a video with-
out audio to one with
audio; this means that I
need a script to create a
sound file containing
two seconds of silence.

The silent_wav()
function that begins in
line 197 expects the
length in seconds, the
name of the resulting
file, the sample $rate,
the number of $chan‑
nels, and the $sample_size of the silent
audio track (Figure 3). It creates a new,
temporary file with a file extension of
.dat and stores the raw data as null
bytes. The Sox utility grabs this file in
line 222 and converts it into the WAV file
that I need.

Perlmeister’s Special
Recipe
Back in the main program, all I should
really need to do is glue the soundtrack
onto the credits and then glue the AVI
files together. Unfortunately, Mencoder
can’t do this without badly offsetting the
audio tracks, leading to unacceptable
synchronization problems between the
audio and video tracks in the resulting
movie. What I can do, however, is ex-
tract the audio track from the original
video, weld it onto the silent audio track
created previously, and fuse the com-
plete audio track with two silent videos
that I have already glued together.

The call to mplayer in line 81 dumps
the audio track from the original video
into a file called audiodump.wmv. Line
85 prepends the silent audio track, thus
creating the complete audio track, which
is stored in the $audio_total file. Line 89
launches Mencoder, glues together
$video_title and $video_file with the
‑nosound option, and converts the result
into an AVI file with an MJPEG-encoded
video stream.

One would think that Mencoder would
be able to add the MJPEG-formatted
video file created from the JPEG photos
to another MJPEG-formatted video file
without messing around with the codec.
Strangely, Mencoder quit outputting a
message to the effect that it wasn’t
happy with the encoding I was using.

However, if you let Men-
coder convert the cam-
corder file to MJPEG, you
can append without any
trouble. This is a pity actu-
ally, because recoding a
video takes almost as long
as it does to play the movie,
whereas the ‑ovc copy op-
tion zooms through the for-
mat much more quickly.
Mine is not to reason why!

Sound for the
Silent Movie
All I need to do now is add

the complete audio track, $audio_total,
to the silent, but otherwise complete,
video. The mencoder command in line
96 uses the ‑audiofile option to do just
that, and ‑ovc copy tells it not to mess
with video encoding. The resulting .avi
is written to the file defined by $video_
out (i.e., to testvideo‑withtitle.avi).

The script uses a couple of utility func-
tions, some of which it defines itself and
others it draws from the CPAN
Sysadm::Install module. For example,
the throwaway_file() function defined
beginning in line 103 creates a tempo-
rary file with the file extension in $suf‑
fix, which is important because some
utilities use the file extension to guess
the file format. The CPAN File::Temp
module manages the temporary files, de-
leting them when the script completes.

The shell() function defined beginning
in line 116 executes a shell command
passed in as a list, checks to see that it
works, and bails out if something goes
wrong. The function declaration in line
10 allows calling the function later with-
out parentheses. Shell uses the tap()
function from the CPAN Sysadm::Install
module to call an external program, cap-
ture the standard and error output, and
return them along with the return code.

Installation
The Mencoder, Mplayer, and Sox tools
are often preinstalled on Linux systems:

If they are not, you can install them on
Debian, for example, as follows:

sudo apt‑get install sox U

 mencoder mplayer

The CPAN Sysadm::Install, Log::Log4
perl, Imager, and Imager::Fill modules
are also available as Debian packages. If
this is not the case for your distribution,
a CPAN shell will help you with the in-
stall. In any case, you will need to use it
to install the Video:: FrameGrab module.
Additionally, you might need to modify
the path to the True Type font file for Ve‑
raSe.ttf, as defined in line 15, to match
your local environment.

Final Credits
Besides opening credits, a trailer can
also enhance the utility value of a movie.
To add one, just modify the script to cre-
ate a second silent movie for the trailer,
patch in a silent sound track, $audio_
trailer (or just use the $audio_title file if
the opening credits and trailer are the
same length), and modify the call to Sox
in line 85 to finish the work:

shell "sox", $audio_title, U

 "audiodump.wav", U

 $audio_trailer, "‑o", $audio_total;

The silent $video_trailer, created from
JPEG images just like the $video_title, is
then appended to the $video_file param-
eter in the mencoder command in line
89. The camera operator will appreciate
being mentioned in the credits, and web
links can point to more detailed informa-
tion for interested viewers. n

Michael Schilli works
as a software engi-
neer with Yahoo! in
Sunnyvale, California.
He is the author of
Goto Perl 5 (German)
and Perl Power (Eng-
lish), both published by Addison-Wes-
ley, and he can be contacted at
mschilli@perlmeister.com. Michael’s
homepage is at http://​perlmeister.​
com.

T
H

E
 A

U
T

H
O

R

[1]	� Listings for this article:
ftp://​www.​linux‑magazin.​de/​pub/​
listings/​magazin/​2010/​01/​Perl

INFO

Figure 3: The raw data for a

two-second silent audio file.

Perl: Mencoder and SoxProgramming

74 ISSUE 111 February 2010

