
Besides this toolbar entry, labeled “Add”,
you will also need a “Bookmarks” entry
pointing to the script, if you just want to
pull up the bookmark list. Then you are
just one click away from a globally
accessible bookmark list. The Javascript
entry is fairly complex, but you do not
need to memorize it. The script displays
the entry at the bottom of the page, and
cut & paste takes care of the rest.

The Perl code for the bookmark sys-
tem spans two files: the Bookmarks.pm
module (see Listing 1) which imple-
ments the functionality of the bookmark
list itself, and the bm CGI script (see List-
ing 2) which takes care of user input and
generates HTML output for the browser.

Directory Tree
Bookmarks.pm creates a tree structure.
Sean Burke’s Tree::DAG_Node module
creates and manipulates directed, acyclic
graphs and is really well-suited to imple-
menting the bookmarks within the folder
structure. Both folders and bookmarks
are nodes in a graph that has its origin at
a root node. The @ISA array in line 12 of
Listing 1 contains Tree::DAG_Node, mak-
ing Bookmarks a subclass Tree::DAG_
Node. An object of the Bookmarks class
represents the root node of the tree. The
root node has child nodes for all folders,
which in turn have child nodes for the
bookmarks with their URLs and text con-
tent (see Figure 3).

Inherited Constructor
Bookmarks.pm does not define a new()
constructor. Instead, Bookmarks->
new() is simply passed on to the super-
class Tree::DAG_Node. Tree::DAG_Node
type objects have an attribute called
attributes beside their typical node
instance variables. attributes points to a

hash that can store application specific
attributes. The following code snippet
creates a new bookmark folder:

Bookmarks->new({
attributes => {
type => "folder",
path => "Perl",

}
});

The following construct creates a new
node with a bookmark entry:

Bookmarks->new({
attributes => {
type => "entry",
text => $text,
link => $link,

}
});

Figure 3 shows a number of folders
below the root of the tree structure; each
containing one or multiple bookmarks.

The module uses the type attribute to
distinguish between folder and book-
mark entries. Bookmarks.pm does not
issue the constructor calls directly. It
uses the new_daughter() method of the
superclass, which calls new() of the
application class under the hood.

The insert() method defined in lines
15 ff. in Bookmarks.pm expects the title
and URL for a new bookmark entry, and
the name of the folder in which to store
the entry, as parameters. Because it is a
method call, the first argument is the
root node:

$bm->insert(...)

Its “daughter” nodes, that is the folders,
are retrieved by the daughters() method

Have you ever bookmarked a site in
your browser and not been able
to find it later because you’ve

switched to a different machine? The CGI
script that we will be looking at has been
in use on my website for a month now
and I can’t live without it. A single click
on a brand new “Bookmarks” entry in the
toolbar pointing to the script is all it takes
to pull up the globally available book-
mark list like in Figure 1.

The script displays bookmarked sites
as links, and a number of operators next
to each entry allows you to move them:
+ (up), - (down), and x (delete). Book-
marks are organized in folders.

Javascript Saves Typing
The HTML form below the list accepts
URLs, text and folder names for new
bookmark entries. Nobody wants to type
in a lengthy URL just to add a site.

A little Javascript magic is all this
takes. Modern browsers allow Javascript
code beside URLs as editable bookmark
entries in the toolbar. When a user clicks
on a toolbar entry that contains the fol-
lowing code, the browser will extract the
title and URL from the website just
viewed in the browser, call the book-
mark CGI script, and enter the title of the
page and its URL into the Web form:

javascript:void(win=window.openU
('http://myserver.com/cgi/bm?a=U
'+location.href+'&t='+document.U
title))

All the user needs to do, is select a folder
from the list, or enter the name of a new
folder, and click on Submit.

To add the Bookmarklet to the Mozilla
/ Netscape toolbar, select Bookmarks |
Manage Bookmarks. See Figure 2.

While surfing the Web from your office, your home, or even with a laptop in a

hotel, a globally accessible CGI script ensures that your personal bookmark list

will be available any time, anywhere. BY MICHAEL SCHILLI

Using a Perl script to manage globally accessible book#

Global Memory

72 June 2004 www.linux-magazine.com

Perl: Global BookmarksPROGRAMMING

in line 23. Tree::DAG_Node
creates a matriarchy, as its
author, Sean Burke, refers to
“mothers” and “daughters”.

If the folder does not exist,
line 34 will create it as a
child of the root node. Line
43 creates a bookmark entry
as a child of the folder node.

The folders() method
defined in lines 53 ff. returns
a list of folder names. The
CGI script will use this list
later to create a pull-down
list of available folders.

House Numbers
Every Tree::DAG_Node object has an
address() method to identify nodes
within a tree. The method describes the
path from the root to the current node as
a sequence of indices. The second entry
(index 1) of the third folder (index 2) is
thus referred to as “0:2:1”.

This “house number” can be used to
access the node object, by passing it to
any tree object (for example the root) as
a parameter of the address() method:

my $node = $bm->U
address("0:2:1");

The CGI script will use the house num-
ber to discover the node within which
the user has clicked a navigational link
(up, down, delete). The as_html()
method in line 63 ff. of Bookmarks.pm
returns a HTML rendering of the book-
mark tree, and calls a function, referred
to by $nav, for each of the folders and
bookmark entries. The function expects
the house number of the node as its
argument and spits out the HTML for the
navigational links. as_html() makes use
of the handy functions in Lincoln Stein‘s
CGI module to create HTML sequences.

Up and Down
The move_up() and move_down() meth-
ods in line 102 ff. and 120 ff. both expect
a house number, and will move the node
object up and down accordingly.

The Tree::DAG_Node module imagines
the child nodes of parent nodes from left
to right. Thus, the first entry within a
folder is the left-most child of the parent
node. Tree::DAG_Node does not provide a
direct method for moving a node left or

right. To do this, we’ll dig up the neigh-
boring nodes, using left_sister(), and
right_sister()), remove the current node
from the parent container ($node-
>unlink_from_mother()), and then
insert it either left or right of the neighbor.
The delete() method in line 138 ff.
removes a node from the parent con-
tainer. If the node is a folder, any
bookmark entries are also deleted.

Permanence Using Storable
To provide a database that stores the state
of the bookmark list between CGI script
calls, Bookmarks.pm uses the Storable
module, which stores complicated,
nested data structures by simple calls to
store(), using restore() to reinstate them.
The save() and restore() methods in
Bookmarks.pm both use the root object of
the tree to do this, thus dragging along
the rest of the tree. Note that store() refers
to an instance variable, as in

$bm->store($file);

whereas restore() is a class method

my $bm = Bookmarks->U
restore($file);

to extract a tree from a file, and assign it
to the instance of a Bookmarks object.

CGI into the Browser
The CGI script, bm, handles user man-
agement. It also uses the CGI module for
the HTML sequences and specifies fatal-
sToBrowser for CGI::Carp, to provide
nicely formatted output in the browser if
something goes wrong, instead of the
dreaded Internal Server Error. It also
pulls in the Bookmarks.pm module.

$DB_FILE in line 10 contains the name
of the file in which Bookmarks.pm will
store the tree permanently, using Stor-
able::store. Line 22 checks if the values
for the URL and text parameters (u and
t) exist, and if the Submit button has
been pressed. The s parameter, a hidden
HTML parameter in the Web form takes
care of this (line 71 ff.). This lets the CGI
script determine whether the Javascript
toolbar entry has just sent the title and
URL for the website entry, or if the user
added a new entry.

In the latter case, line 25 retrieves the
folder name, and line 29 checks if the
user has entered a non-existent folder
name (shown in the fnew parameter)
into the textbox. If the folder name is
missing, line 30 quits with an error mes-
sage. Otherwise, line 33 will call the
insert() method to add to the database.

When a user clicks a navigational link,
either del, mvu (for “move up”), or mvd
(for “>move down”) is set, and lines 37
through 39 call the appropriate Book-
marks.pm method to modify the tree
structure. The HTML output follows,
starting with the HTTP header in line 44,
and followed by the HTML rendering of
the bookmark tree in line 48. Line 49
puts the modified tree structure into per-
manent storage on the disk.

The print() command in line 51 cre-
ates the web form. The CGI module
automatically enters CGI parameter val-
ues into the form fields. The pop-up
menu with the names of the existing
folders created in line 61 ff. uses the
folders() method in Bookmarks.pm.

Line 76 outputs the bookmarklet men-
tioned earlier. After adding this entry to
the toolbar, users can point and click to
create new entries in the tree structure.

73www.linux-magazine.com June 2004

PROGRAMMINGPerl: Global Bookmarks

Figure 1: The globally accessible bookmark list. Creating a new
bookmark for the Perlmonks page.

Figure 2: Using Javascript to define a toolbar
shortcut.

74 June 2004 www.linux-magazine.com

Perl: Global BookmarksPROGRAMMING

001 #############################
002 package Bookmarks;
003 #############################
004 # Admin browser bookmarks
005 # Mike Schilli, 2004
006 # m@perlmeister.com
007 #############################
008
009 use Storable;
010 use CGI qw(:all *dl *dt);
011 use Tree::DAG_Node;
012 our @ISA= qw(Tree::DAG_Node);
013
014 #############################
015 sub insert {
016 #############################
017 my($self, $text, $link,
018 $fname) = @_;
019
020 my $folder;
021
022 # Search folder node
023 for($self->daughters()) {
024 if($_->
025 attributes()->{path} eq
026 $fname) {
027 $folder = $_;
028 last;
029 }
030 }
031 # Not found? Create it.
032 unless(defined $folder) {
033 $folder =
034 $self->new_daughter({
035 attributes => {
036 type => "folder",
037 path => $fname,
038 },
039 });
040 }
041 # Add it and return obj
042 return $folder->
043 new_daughter({
044 attributes => {
045 type => "entry",
046 text => $text,
047 link => $link,
048 },
049 });
050 }
051
052 #############################
053 sub folders {
054 #############################
055 my($self) = @_;
056
057 return map {

058 $_->attributes()->{path}
059 } $self->daughters();
060 }
061
062 #############################
063 sub as_html {
064 #############################
065 my($self, $nav) = @_;
066
067 my $html = start_dl();
068
069 for my $f ($self->
070 daughters()) {
071
072 $html .= dt(
073 b($f->attributes()->
074 {path}),
075 $nav->(
076 $f->SUPER::address())
077);
078
079 for my $bm ($f->
080 daughters()) {
081 my $bma =
082 $bm->SUPER::address();
083
084 my($link, $text) =
085 map { $bm->
086 attributes()->{$_}
087 } qw(link text);
088
089 $html .= dd(
090 a({href => $link},
091 $text
092), $nav->($bma));
093 }
094 }
095
096 $html .= end_dl();
097
098 return $html;
099 }
100
101 #############################
102 sub move_up {
103 #############################
104 my($self, $address) = @_;
105
106 my $node =
107 $self->SUPER::address(
108 $address);
109
110 if(my $left =
111 $node->left_sister()) {
112 $node->
113 unlink_from_mother();
114 $left->

115 add_left_sister($node);
116 }
117 }
118
119 #############################
120 sub move_down {
121 #############################
122 my($self, $address) = @_;
123
124 my $node =
125 $self->SUPER::address(
126 $address);
127 if(my $right =
128 $node->right_sister()) {
129 $node->
130 unlink_from_mother();
131 $right->
132 add_right_sister(
133 $node);
134 }
135 }
136
137 #############################
138 sub delete {
139 #############################
140 my($self, $address) = @_;
141
142 my $node =
143 $self->SUPER::address(
144 $address);
145 $node->
146 unlink_from_mother();
147 }
148
149 #############################
150 sub restore {
151 #############################
152 my($class, $filename) = @_;
153
154 my $self =
155 retrieve($filename) or
156 die "Cannot retrieve " .
157 "$filename ($!)";
158 }
159
160 #############################
161 sub save {
162 #############################
163 my($self, $filename) = @_;
164
165 store $self, $filename or
166 die "Cannot save " .
167 "$filename ($!)";
168 }
169
170 1;

Listing 1: Bookmarks.pm

76 June 2004 www.linux-magazine.com

Perl: Global BookmarksPROGRAMMING

The as_html() method called in line 48
gets a reference to the nav() function,
which is defined in lines 85 ff.

The function is responsible for return-
ing the HTML code for the navigational
elements for each of the entries. As pre-
viously explained, as_html() calls nav()
for each of the entries displayed, and
passes the house number for that entry.
The number gets assigned to $n in
nav(), and it is appended to links that
refer to the CGI script and contain navi-
gational commands such as mvu, mvd,
and del.

The Basic Auth scheme uses a password
for every permitted user, which can be
set with

htpasswd username U

/var/www/htpasswd

Basic Auth isn’t the safest method, but
it’s fine for my purposes.

Restrictions
The script assumes only one user.

If you are interested in the data struc-
ture stored in the data file, you can use
the dumpsto script [2] to create a dump
of the storable file. dumpsto -u will put
the data back in a file. ■

[1] Listings for this article:
http://www.linux-magazine.com/
Magazine/Downloads/43/Perl/

[2] dumpsto and other scripts in “Mike’s
Script Archive”:
http://perlmeister.com/scripts

INFO

Figure 3: The Tree::DAG_Node Perl module stores objects in a tree structure. The bookmark script lever-
ages this structure to store folders and URLs.

Root

link => "http://perlmeist..."

type => "entry" type => "entry"

text => "Ebay Feedback"

link => "http://ebay.com/..."

type => "entry"

text => "Time Off"

link => "http://timeoff..."

type => "folder"

path => "Private"

type => "folder"

path => "AOL"

type => "folder"

path => "Perl"

type => "entry"

text => "Perlmonks..."

link => "http://perlmonks..."

text => "Perlmeister Stat..."

01 #!/usr/bin/perl
02 #############################
03 # bm -- Global Bookmarks CGI
04 # Mike Schilli, 2004
05 # (m@perlmeister.com)
06 #############################
07 use warnings;
08 use strict;
09
10 my $DB_FILE = "/tmp/bm.sto";
11
12 use CGI qw(:all *table);
13 use CGI::Carp qw(
14 fatalsToBrowser);
15 use Bookmarks;
16
17 my $bm = Bookmarks->new();
18
19 $bm = Bookmarks->restore(
20 $DB_FILE) if -f $DB_FILE;
21
22 if(param('t') and param('a')
23 and param('s')) {
24
25 my $f = param('f');
26
27 # String overrides select
28 $f = param('fnew')
29 if param('fnew');
30 die "No folder defined"
31 unless length($f);
32

33 $bm->insert(param('t'),
34 param('a'), $f);
35 }
36
37 $bm->delete(param('del')) if
38 param('del');
39 $bm->move_up(param('mvu')) if
40 param('mvu');
41 $bm->move_down(param('mvd'))
42 if param('mvd');
43
44 print header(),
45 start_html(
46 -title => "Bookmarks");
47
48 print $bm->as_html(\&nav);
49 $bm->save($DB_FILE);
50
51 print start_form(),
52 start_table(),
53 TR(td("Title"),
54 td(textfield(
55 -name => 't',
56 -size => 80))),
57 TR(td("URL"), td(textfield(
58 -name => 'a',
59 -size => 80))),
60 TR(td("Folder"),
61 td(popup_menu(
62 -name => 'f',
63 -values =>
64 [$bm->folders()]

65))),
66 TR(td("New Folder"),
67 td(textfield(
68 -name => 'fnew',
69 -size => 80))),
70 end_table(),
71 hidden(s => 1),
72 submit(),
73 end_form(), end_html(),
74 ;
75
76 print "Use this in your " .
77 "toolbar: ", pre(
78 "javascript:void(win=" .
79 "window.open('" .
80 url(-path_info => 1) .
81 "?a='+location.href+'&t='".
82 "+document.title))");
83
84 #############################
85 sub nav {
86 #############################
87 my($n) = @_;
88
89 return " [" .
90 a({href => url() .
91 "?mvu=$n"}, "+") . " " .
92 a({href => url() .
93 "?mvd=$n"}, "-") . " " .
94 a({href => url() .
95 "?del=$n"}, "x") . "]";
96 }

Listing 2: bm

Installation
The Bookmarks.pm module requires
Tree::DAG_Node, and Storable from
CPAN. Copy bm to the cgi-bin directory
of the Web server and make it exe-
cutable. Copy Bookmarks.pm to the
same directory, or where bm can find it.

To protect your bookmark list, your
Web server can use a .htaccess file:

AuthType Basic
AuthName "Mike's Bookmarks"
AuthUserFile /var/www/htpasswd
Require valid-user

