
72

Now where did I store that script
I put together yesterday? Which
are the newest files, which take

up the most disk space, or which files
have not been touched for at least three
years? And where was that text file that
I wrote last week containing the words
“Michael” and “raise?”

Of course, there is nothing to stop you
navigating the disk level by level and
retrieving the information you need.
Cheap but enormous hard disks have led
to users no longer bothering to tidy up
their home directories in recent years;
find and other utilities often need to
navigate tens or even hundreds of thou-
sands of irrelevant entries before they
come up with the goods. That takes

time, and time is a luxury that many
people don’t have.

Utilities such as slocate climb around
the filesystem tree at night helping users
to quickly find files by path the next day.
The Google desktop [2] and Spotlight on
MacOS X take this one step further, by
creating a meta-index and helping users
to discover files based on a variety of
properties.

The script we will be looking at today,
rummage, implements a Perl-based
desktop search. It not only takes file-
names into consideration, but also
remembers when files first appeared,
and when they were last changed. It
adds various snippets of meta-informa-
tion for each file to a MySQL database

(Figure 1) and creates a full-text index
for text files, allowing users to browse
their content later using a keyword-
based search.

Full-Text to the Max
Version 3.23.23 of MySQL introduced a
FULLTEXT option, which can be used to
tag columns in tables and perform full-
text searches against the content later.
4.0.1 added Boolean operators for the
search keys. Users can even create stop
lists to exclude common but useless
words from indexing. The database also
supports query expansion; that is, it
retrieves documents containing words of
the documents shown by a query. When
tested, however, the query speed left a
lot to be desired. And as every full-text
document ends up in the database, the
database can soon become unwieldy.

The DBIx::FullTextSearch Perl module,
which defines an index of its own using
MySQL as its back-end, also has a few

On a big, busy Linux desktop, it is too easy for files to get lost. We’ll

show you a Perl script that creates a MySQL database to find files in

next to no time.

BY MICHAEL SCHILLI

GO GET IT!
Desktop search in Perl

GO GET IT!

w
w

w
.sxc.h

u
Perl: Desktop SearchesPROGRAMMING

72 ISSUE 59 OCTOBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

73

quirks. Indexing is a slow process, and it
becomes even slower when you have
more than 30,000 files in the index.

This is why rummage uses the tried-
and-trusted SWISH-E indexer, which
indexes and searches at an amazing
speed. It supports keywords and phrase
search and scales really well. The
SWISH::API::Common module from
CPAN facilitates communication with
SWISH-E by focusing on the most com-
monly used aspects. This said, SWISH-E
can’t delete files from an index once cre-
ated; and this means reindexing every
day to keep up to date. A cronjob run-
ning every night can easily handle a cou-
ple of hundred thousand files, and that
should be quite enough for normal use.

Approaches
After completing an initial indexing ses-
sion with rummage -u (update), users
can finally access the meta-data and the
full-text index. The command rummage
-k query finds text files containing a
given keyword. Box 1 gives a few exam-
ples of different keyword searches and
queries for different meta data.

As the schema in Figure 1 shows, the
MySQL database stores the full path to
every file, its size in bytes, the time and
date when it first appeared on the file-
system, the last access time, and the last
modification time.

A file named call.sgml embedded
somewhere in the murky depths of the
indexed hierarchy can be found by call-
ing rummage -p call.sgml. Under the
hood, rummage converts call.sgml into
the SQL pattern %call.sgml% and que-
ries the file table with WHERE path LIKE
"%call.sgml%". Relative paths, such as

examples/call.sgml, will also work, but
in this case, rummage will only find the
file if it is stored below the examples
subdirectory.

rummage -n 20 finds the last 20 files
that have been modified. If you leave out
the integer, the command defaults to the
last 10 modified files. rummage -m "7
day" gives you all files modified within
the last week. To do so, it generates a
MySQL query that looks like this

SELECT * FROM file
WHERE DATE_SUB(NOW(),
 INTERVAL 7 DAY) <= mtime

telling MySQL to calculate whether the
modification date for each entry is more
than one week in the past. If needed,
you can replace the number of days in
the expression with something like 3
month or 18 hour. Of course, none of
this refers to real time, but to the last
database update, which will typically be
from the night before. rummage just

doesn’t see anything that happened after
this point in time.

You may need to modify the first sec-
tion in the rummage listing to suit your
own environment. The $MAX_SIZE con-
stant defines the maximum length of the
indexed content for a text file. If Perl’s -T
operator in SWISH::API::Common identi-
fies a 100Mbyte logfile as a text file, you
will probably not want to index the
whole thing. A value of 100_000 speci-
fies that only the first 100Kbytes will be
indexed.

One line further down, the DBI-Class
module’s Data Source Name $DSN speci-
fies the database driver (mysql, that is
DBD::mysql) and the name of the data-
base (dts). Finally, @DIRS is an array of
directory names, which rummage navi-
gates recursively. If symbolic links are
used rather than directories, line 24
resolves the links. If indexing your
whole home directory takes too long,
you can restrict the index to one or mul-
tiple subdirectories, such as a local CVS
workspace.

Line 27 declares the psearch function,
which later outputs the search results
from the various queries. The function
uses a prototype to do this, specifying
that psearch expects a scalar as its one
and only parameter. This is important as
the output from the DBI::Class methods
search() or search_like() to psearch has
to be in a scalar context, as this is the
only way to return an iterator that
psearch can evaluate.

Without the prototype, the search()
method in the expression psearch
($db->search(...)) would be in the array
context – and this would mean that the
DBI::Class module’s search() method

01 rummage -u -v # Refresh or create database;

02 # -v for verbose status output

03 # in the logfile

04 rummage -k 'linux' # keyword search for "linux"

05 rummage -k '"mike schilli"' # Search for phrase

06 rummage -k 'foo AND (bar OR baz)' # Documents with "foo" and "bar"

07 # or with "foo" and "baz"

08 rummage -k 'torvald*' # Wildcard search

09 rummage -p pathlike # Search for file by name or path

10 rummage -n 20 # Display the last 20 files
modified

11 rummage -m '7 day' # All files modified last week

Rummage Commands

Figure 1: The schema for the ‘file’ table, in which ‘rummage’ stores meta-data for files on the

filesystem.

GO GET IT!
Desktop search in Perl

GO GET IT!

PROGRAMMINGPerl: Desktop Searches

73ISSUE 59 OCTOBER 2005W W W. L I N U X- M A G A Z I N E . C O M

would return a list of matches by defini-
tion rather than an iterator.

getopts() analyzes the parameters
passed to it. The database update param-
eter (-u) enables the Log4perl frame-
work. If the user specified verbose out-
put (-v), the level is set to $DEBUG; the
default is $INFO which only stores infor-
mational messages in the logfile.

The logfile is overwritten each time
to avoid filling up the hard disk. An
alternative approach would be to use a
Log4perl configuration with Log::Dis-
patch::FileRotate.

In line 41, db_init() calls the function
with this name in 186; the function ini-
tializes the database with the file table,
if this has not already been done. The

function additionally defines an index
on the path column to allow rummage
to quickly check later if an entry for a
file already exists, and if the timestamp
for the file has changed. These extra fea-
tures mean that the initial rummage
search after installation can take a while.
But don’t worry, updates will be a lot
quicker later.

 Listing 1: rummage Listing 1: rummage
001 #!/usr/bin/perl -w

002 #############################

003 # rummage - Index and search

004 # the home directory

005 # Mike Schilli, 2005

006 # <m@perlmeister.com>

007 #############################

008 use strict;

009

 010 use Getopt::Std;

011 use File::Find;

012 use DBI;

013 use Class::DBI::Loader;

014 use Log::Log4perl qw(:easy);

015 use SWISH::API::Common;

016 use Time::Piece::MySQL;

017

 018 my $MAX_SIZE = 100_000;

019 my $DSN = "dbi:mysql:dts";

020 my @DIRS = ("$ENV{HOME}");

021 my $COUNTER = 0;

022

 023 @DIRS = map {

024 -l $_ ? readlink $_ : $_

025 } @DIRS;

026

 027 sub psearch($);

028 getopts("un:m:k:p:v",

029 \my %opts);

030

 031 if ($opts{u}) {

032 Log::Log4perl->easy_init({

033 level =>

034 $opts{v} ? $DEBUG :

035 $INFO,

036 file =>

037 ">/tmp/rummage.log",

038 });

039 }

040

 041 db_init($DSN);

042

 043 my $loader =

044 Class::DBI::Loader->new(

045 dsn => $DSN,

046 user => "root",

047 namespace => "Rummage",

048);

049

 050 my $filedb =

051 $loader->find_class("file");

052

 053 my $swish =

054 SWISH::API::Common->new(

055 file_len_max => $MAX_SIZE,

056 atime_preserve => 1,

057);

058

 059 # Keyword search

060 if ($opts{k}) {

061 my @docs = $swish->search(

062 $opts{k});

063 print $_->path(), "\n"

064 for @docs;

065

 066 # Search by mtime

067 } elsif ($opts{m}) {

068 $filedb->set_sql(

069 modified => qq{

070 SELECT __ESSENTIAL__

071 FROM __TABLE__

072 WHERE DATE_SUB(NOW(),

073 INTERVAL $opts{m}) <= mtime

074 });

075 psearch(

076 $filedb->search_modified()

077);

078

 079 # Search by path

080 } elsif ($opts{p}) {

081 psearch(

082 $filedb->search_like(

083 path => "%$opts{p}%"

084)

085);

086

 087 # Search newest

088 } elsif (exists $opts{n}) {

089 $opts{n} = 10

090 unless $opts{n};

091

 092 $filedb->set_sql(

093 newest => qq{

094 SELECT __ESSENTIAL__

095 FROM __TABLE__

096 ORDER BY mtime DESC

097 LIMIT $opts{n}

098 });

099

 100 psearch(

101 $filedb->search_newest()

102);

103

 104 # Index Home Directory

105 } elsif ($opts{u}) {

106 # Uncheck all documents

107 $filedb->set_sql(

108 "uncheck_all", qq{

109 UPDATE __TABLE__

110 SET checked=0

111 });

112 $filedb->sql_uncheck_all()

113 ->execute();

114

 115 find(\&wanted, @DIRS);

116

 117 # Update keyword index

118 $swish->index_remove();

119 $swish->index(@DIRS);

120

 121 # Delete all dead documents

122 # in the DB

123 $filedb->set_sql(

Perl: Desktop SearchesPROGRAMMING

74 ISSUE 59 OCTOBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

Class::DBI::Loader connects to the
database in line 44 to generate the
object-oriented representation of the
database for Class::DBI. Following this,
object-oriented access to the file table
occurs using the Rummage::File class. If
any of the search() calls returns an itera-
tor, it is output via psearch(), which sim-
ply calls ->next() until the iterator does

not return any more results. A result
object’s path() method retrieves the file
path for each match, while the mtime()
method retrieves the last modification
time for the entry.

Not all queries can be easily per-
formed using a Class::DBI abstraction.
When things start to get more compli-
cated, you can drop down to SQL level

with Class::DBI. The set_sql method
allows you to define queries, such as
newest in line 92, which is then available
in the Class::DBI abstraction as search_
newest().

Up to Date
When rummage sees the -u parameter
on the command line, it will search the

 Listing 1: rummage Listing 1: rummage
124 "delete_dead", qq{

125 DELETE FROM __TABLE__

126 WHERE checked=0

127 });

128 $filedb->sql_delete_dead()

129 ->execute();

130

 131 } else {

132 LOGDIE "usage: $0 [-u] ",

133 "[-v] [-n [N]] ",

134 "[-p pathlike] ",

135 "[-k keyword] ",

136 "[-m interval]";

137 }

138

 139 #############################

140 sub wanted {

141 #############################

142 return unless -f;

143

 144 my $fn = $File::Find::name;

145

 146 DEBUG ++$COUNTER, " $fn";

147

 148 my ($size, $atime,

149 $mtime) =

150 (stat($_))[7, 8, 9];

151 $atime = mysqltime($atime);

152 $mtime = mysqltime($mtime);

153

 154 my $entry;

155

 156 if (($entry) =

157 $filedb->search(

158 path => $fn)) {

159

 160 if ($entry->mtime() eq

161 $mtime) {

162 DEBUG "$fn unchanged";

163 } else {

164 INFO "$fn changed";

165 $entry->mtime($mtime);

166 $entry->size($size);

167 $entry->atime($atime);

168 }

169 } else {

170 $entry = $filedb->create(

171 { path => $fn,

172 mtime => $mtime,

173 atime => $atime,

174 size => $size,

175 first_seen =>

176 mysqltime(time()),

177 });

178 }

179

 180 $entry->checked(1);

181 $entry->update();

182 return;

183 }

184

 185 #############################

186 sub db_init {

187 #############################

188 my ($dsn) = @_;

189

 190 my $dbh =

191 DBI->connect($dsn,

192 "root", "",

193 { PrintError => 0 });

194

 195 LOGDIE "DB conn failed: ",

196 DBI::errstr unless $dbh;

197

 198 if (!$dbh->do(

199 q{select * from

200 file limit 1}

201)) {

202 $dbh->do(q{

203 CREATE TABLE file (

204 fileid INTEGER

205 PRIMARY KEY

206 AUTO_INCREMENT,

207 path VARCHAR(255),

208 size INTEGER,

209 mtime DATETIME,

210 atime DATETIME,

211 first_seen DATETIME,

212 type VARCHAR(255),

213 checked INTEGER

214)}) or LOGDIE

215 "Cannot create table";

216

 217 $dbh->do(q{

218 CREATE INDEX file_idx

219 ON file (path)

220 });

221 }

222 }

223

 224 #############################

225 sub psearch($) {

226 #############################

227 my ($it) = @_;

228

 229 while (my $doc =

230 $it->next()) {

231 print $doc->path(), " (",

232 $doc->mtime(), ")",

233 "\n";

234 }

235 }

236

 237 #############################

238 sub mysqltime {

239 #############################

240 my ($time) = @_;

241 return Time::Piece->new(

242 $time)->mysql_datetime();

243 }

PROGRAMMINGPerl: Desktop Searches

75ISSUE 59 OCTOBER 2005W W W. L I N U X- M A G A Z I N E . C O M

filesystem using File::Find, and add the
latest meta-information to the database.
To start off, the UPDATE command,
which is defined in line 107 and run in
line 112, sets the checked column value
for all table entries to 0. If the search
function does find an entry in the filesys-
tem, this entry is tagged as verified by
setting the checked column for the entry
to 1. Any entries left with a value of
checked=0 after completing the search
have obviously disappeared from the
filesystem since the last search; these
entries need to be deleted from the data-
base and removed from the full text
index.

Line 115 launches the find function,
which starts searching the specified
directories and digs down through the
file structure. The wanted function
defined in line 140 is called whenever an
entry is found. Line 142 immediately
drops anything that does not look like a
file. The stat command in line 150 dis-
covers the file size in bytes, along with
the last read and write times associated
with the file.

If an entry matching the path is found
in the database, line 160 checks if the
last modification time is identical to the
value for the modification time stored in
the database. If the modification times
are not identical, lines 165 through 167
update the meta-information (mtime,
atime, size) for the entry. If the file is not
already in the database, the create
method in line 170 creates a new entry.
The call to checked() in line 180 sets the
checked field to 1, followed by update(),

which actually performs the update
transaction.

Time Format Conversion
MySQL expects “YYYY-MM-DD HH:MM:
SS” formatted DATETIME fields, but the
Perl stat command returns the Unix time
in seconds. The Time::Piece::MySQL
module provides the mysql_datetime
method to convert the value returned by
Perl's time() function to MySQL's time
format. The mysqltime function defined
in rummage in line 238 shortens the call.

Garbage and Disk Space
Hogs
Users can play around with the meta-
data for files that rummage has pro-
cessed with the mysql client program
before adding more intelligence to rum-
mage with DBI::Class-based queries.

The dbish DBI shell from CPAN con-
nects to any database supported by DBI
and supports SQL queries. It is installed
with the DBI::Shell module from CPAN.
The following call is for a MySQL data-
base: dbish dbi:mysql:<TABLE> user
password. Figure 2 shows the shell in
action: a SQL query for the ten biggest
disk space hogs:

SELECT path, size FROM file
ORDER BY size DESC LIMIT 10;

will have the culprits squealing for
mercy.

The following SQL expression finds
the ten oldest files that have not been
touched for years:

SELECT path, atime FROM file
ORDER BY atime ASC LIMIT 10;

Text files are processed by the indexer
every day. Unless you mount the filesys-
tem with the noatime option set, the last
access date is never more than one day
in the past.

Installation
The CPAN shell should guide you
through the installation of the required
Perl modules. The mysqladmin tool will
help you create the dts database in
MySQL: mysqladmin --user=root create
dts.rummage takes care of the database
tables automatically. A cronjob calls
rummage once a day at 3:05 am:

05 03 * * * LD_LIBRARY_PATH=/usr/
local/lib /home/mschilli/bin/rummage -u
-v >/dev/null 2>&1

The MySQL database is included with
most Linux distributions. You can also
download it from mysql.com.

The swish-e indexer and the SWISH::
API module are available from swish-
e.org. SWISH::API::Common from CPAN
attempts to install both automatically.
If this does not work, you might prefer
to download swish-e 2.4.3 or newer,
and then run ./configure; make install
to install. The SWISH::API module is
included with the distribution. The
following commands

cd perl
LD_RUN_PATH=U
/usr/local/lib perl Makefile.PL
make install

handle the installation. ■

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 59/ Perl

[2] Google Desktop Search:
http:// desktop. google. com

INFO

Figure 2: Using a MySQL query to locate the biggest disk space hogs.

Michael Schilli works
as a Software Devel-
oper at Yahoo!,
Sunnyvale, Califor-
nia. He wrote “Perl
Power” for Addison-
Wesley and can be
contacted at mschilli@perlmeister.
com. His homepage is at
http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

Perl: Desktop SearchesPROGRAMMING

76 ISSUE 59 OCTOBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

