
69

My colleague Fergus recently no-
ticed that his SecurID token
displayed “000000,” and he

posted a photo of this on Flickr [1].
These keyfob tokens by SecurID output a
different 6-digit number every 60 sec-
onds (Figure 1). If the odds for any nu-
meric sequence appearing are equal, the
chance of getting to see “000000” is one
in a million. It’s like winning the lottery!

This lucky shot made me curious to
find out what my keyfob displayed while
I wasn’t looking. It is fairly easy to digi-
tize the output with a webcam or a scan-
ner (Figure 2), and optical character rec-
ognition (OCR) would give me the digits
hidden in the pixel-based output. But be-
cause OCR vendors have more or less
patented this area to death, there is little
in the line of functional free software.

In this case, full-blown OCR is unnec-
essary because the token only displays
the numbers zero through nine. The dis-
play is made up of just seven evenly
spaced digits with seven fairly thick,
black LCD segments each, and that
makes the task easier – all it takes are a
Perl script and the right CPAN modules.

Please note: the Fobcam [2] of a com-
puter user who uses a webcam to show
the current output from his SecurID token
on his website because he’s too lazy to
carry the token with him is good for a
joke, but nothing you want to imitate.

A webcam or scanner is needed to
grab an image of the token. In a previous
issue of this column [3], I pointed out
how to control a webcam on Linux with
the Video::Capture::V4l module. Now, a
Video::Capture::V4l::Imager module is

available from CPAN, and that makes
things even easier.

The fobcam listing (Listing 1) shows
how the Perl module controls the cam-
era, starting by setting the required
brightness with the brightness() method.
The best value will depend on the cam-
era type and the ambient light. After a
couple of experiments, you should have
a usable value. If you want to have the
module figure out the best brightness
setting, it also has a calibrate() method

Do-it-yourself OCR with Perl modules

ONE IN A MILLION

SecurID tokens use an authentication system by RSA Security to give

the user a valid key for logging onto the target system. A home-grown

optical character recognition tool in Perl monitors the key generator.

 BY MICHAEL SCHILLI

PROGRAMMINGPerl: Optical Character Recognition

69ISSUE 79 JUNE 2007W W W. L I N U X- M A G A Z I N E . C O M

Figure 1: The RSA Security keyfob displays a

new six-digit number every 60 seconds.

C
a
ra

 P
u

rd
y, Foto

lia

that tries different brightness() settings
until the captured image matches the
preset mean brightness.

The capture method then returns an
Imager type object as a result, and you
can either process the image data di-
rectly or store the results on disk in a
popular format such as JPEG or PNG.

Home-Grown OCR
For character recognition purposes, we
first need to determine the position of
the keyfob display in the image and cal-
culate the position of the individual dig-
its. After discovering the coordinates of
the rectangle containing the seven LCD
segments that make up each number,
the recognition script defines a sensor
for each segment to measure the bright-
ness values of individual pixels near
them (Figure 3). If the sensor returns a
high value, the matching segment is in-
active. If a low RGB value is returned,
the image has a dark patch, and assum-
ing that the lighting is okay, this indi-
cates an active LCD segment.

Figure 4 shows a single LCD digit. The
segments have been numbered somewhat
arbitrarily to refer to them individually in
the program. For the number 8, all seg-

ments have to be active, whereas just
segments 2 and 3 are lit for the number 1.

Practical experience revealed that
the token was not always straight in the
image, that the cheap webcam has as-
tonishingly poor close-up image quality,
and that the lamp on my desk used to
illuminate the scene doesn’t exactly
resemble clean room conditions. Time
to dig into my bag of tricks.

To determine the positions of the indi-
vidual segments within the image, the
recognition script first has to get its bear-
ings in the image. To do so, I used the
two outer top corners of the blue area
shown in Figure 5 as reference points.
Their pixel coordinates (x1_ref, y1_ref)
and (x2_ref, y2_ref) are passed in to the
recognition script.

If you care to experiment with this, a
Blue.pm module is available with the
listings for this article [4]. The script
uses a simple approach to discover the
two reference points. Unfortunately, ex-
plaining exactly how this works would
be way beyond the scope of this article.

That said, you can just
as easily use GIMP to
find the coordinates by
loading a test image and
hovering the mouse over
the reference points.
GIMP will show you the
X/Y coordinates in the
bottom left-hand corner
of the window.

The two reference
points make it easy to
uniquely identify the
position of the token in
the image. Of course,
every keyfob has slightly
different dimensions,
and the resolution will

influence the values for the distances
between the reference points and the
segments even if you use the same token.

Because of the problems stated above,
the script does not hard-code the dimen-
sions; rather, it uses the fobs.yml config-
uration file to manage them (Listing 2).

The horizontal distance between the
first reference point of a token sitting
perfectly straight in the image (for cali-
bration only) and the first digit in the
display is specified by x_off. y_off is the
vertical distance between the top row
of the digit segments and an imaginary
horizontal line that connects the two
reference points (Figure 5).

The width of the LCD digits is defined
as digit_width, and digit_height is the
height. digit_dist is the horizontal dis-
tance from the start of one digit to the
start of the next. Finally, digits specifies
the number of digits shown in the dis-
play. The dimensions in fobs.yml are
given in pixels, but the data is really
independent of the screen resolution.

Perl: Optical Character RecognitionPROGRAMMING

70 ISSUE 79 JUNE 2007 W W W. L I N U X- M A G A Z I N E . C O M

01 #!/usr/bin/perl -w

02 use strict;

03 use

04 Video::Capture::V4l::Imager;

05 use Log::Log4perl qw(:easy);

06

 07 Log::Log4perl->easy_init(

08 $DEBUG);

09

 10 my $v =

11 Video::Capture::V4l::Imager

12 ->new(

13 width => 640,

14 height => 480,

15);

16

 17 $v->brightness($ARGV[0]

18 || 27_900);

19 my $img = $v->capture();

20

 21 $img->write(

22 file => 'fob.jpg')

23 or die "Can't write: $!";

Listing 1: fobcam

01 # Key Fob Characteristics

02 RSA1:

03 x1_ref: 176

04 y1_ref: 232

05 x2_ref: 422

06 y2_ref: 155

07 x_off: 99

08 y_off: 9

09 digit_width: 12

10 digit_height: 27.5

11 digit_dist: 23

12 digits: 6

Listing 2: fobs.yml

Figure 2: My Fobcam lab setup: a lamp ensures constant light,

and the webcam is perpendicular to the SecurID token.

Figure 3: The OCR system has correctly iden-

tified the number in the display. The OCR

mask is attached to the two green reference

points; sensors are placed at the positions

marked in red to scan the numeric output.

Before the script uses the di-
mensions, it first determines
the distance between the real
reference points in the actual
image, compares them with
the data in fobs.yml, and inter-
polates all values accordingly.

The script in Listing 3, reco,
expects an image file and four
coordinates for the two refer-
ence points of the current
token in the current image:

$ reco fob.jpg U
160 193 425 218
372394

The script then outputs the
six-digit number that it has de-
tected. To do so, it uses the LCDOCR.pm
module (described later). The reco()
method in LCDOCR.pm returns a pointer
to an array containing the recognized
digits.

If the script starts in verbose mode
(-v), it will draw the sensor locations
into the image and also scribble in the
recognized number. It will save the re-

sult in a file named out1.
jpg, which can help cali-
brate the parameter set-
tings if the sensors are not
quite at the right loca-
tions. If you call the script
with the -d command-line
option, it will additionally
launch the fast xv image
viewer showing the image
with the embedded infor-
mation (Figure 3).

The LCDOCR.pm mod-
ule implements the OCR
process (Listing 4). To do
so, it delves into the realm
of the C programming lan-
guage within the Imager
module. You could use an

XS file for this, as shown in my previous
article [3], but the CPAN Inline::C mod-
ule lets you embed C code directly into
your Perl script.

The first time the script is called, the
C code is compiled transparently for the
user, and the object and shared library
files are stored in the _Inline subdirec-
tory. The next time you launch the

script, the compiler step is not needed,
and the script will launch at full speed. If
the C code in the script changes, Inline::
C notices the changes and recompiles.

To calculate the token’s angle of rota-
tion relative to the border of the image
from the reference points, the new con-
structor uses a couple of simple trigono-
metric functions. The distances between
the coordinates are the legs of a right-an-
gled triangle; thus, the angle of rotation
can be calculated as the tangent of the
quotient from the opposite leg to the adja-

PROGRAMMINGPerl: Optical Character Recognition

71ISSUE 79 JUNE 2007W W W. L I N U X- M A G A Z I N E . C O M

Figure 4: Numbering

the segments in the

LCD display helps

define the logic for the

simple character rec-

ognition algorithm.

01 #!/usr/bin/perl -w

02 use strict;

03 use Log::Log4perl qw(:easy);

04 use LCDOCR;

05 use Getopt::Std;

06

 07 getopts("vd", \my %opts);

08 Log::Log4perl->easy_init(

09 $opts{v} ? $DEBUG : $ERROR);

10 my ($file, $x1, $y1, $x2,

11 $y2) = @ARGV;

12 die "usage: " .

13 "$0 file x1 y1 x2 y2\n"

14 unless defined $y2;

15

 16 my $i = Imager->new();

17 $i->read(

18 file => $file,

19 type => "jpeg"

20)

21 or die "Can't read $file";

22

 23 my $gr =

24 Imager::Color->new(0, 255,

25 0);

26 $i->circle(

27 color => $gr,

28 r => 1,

29 x => $x1,

30 y => $y1

31);

32 $i->circle(

33 color => $gr,

34 r => 1,

35 x => $x2,

36 y => $y2

37);

38

 39 my $ocr = LCDOCR->new(

40 name => 'RSA1',

41 x1_ref => $x1,

42 y1_ref => $y1,

43 x2_ref => $x2,

44 y2_ref => $y2,

45 image => $i,

46 debug => ($opts{v} || 0)

47);

48

 49 my $digits = $ocr->reco();

50

 51 if ($opts{v}) {

52 my $font =

53 Imager::Font->new(file =>

54 "/usr/X11R6/lib/X11/fonts/TTF/
Vera.ttf"

55);

56

 57 $i->string(

58 x => 50,

59 y => 50,

60 string => "Reco: @$digits",

61 font => $font,

62 color => "white",

63 size => 30

64);

65 $i->write(

66 file => "out1.jpg",

67 type => "jpeg"

68);

69 system("xv out1.jpg")

70 if $opts{d};

71 }

72 print join('', @$digits),

73 "\n";

Listing 3: reco

Figure 5: The two reference points (x1_ref,

y1_ref) and (x2_ref, y2_ref) at the top cor-

ners of the blue area determine the coordi-

nate system from which the pixel distances

for the individual digits are generated.

cent leg (Figure 6). Perl does not have a
native atan function, but it does have
atan2(), which accepts both leg lengths
separately.

Because the token does not need to
be aligned perfectly in the image, the
character recognition script spins its de-
tection web horizontally and uses the

rotate() function to rotate it to the angle
of the token, which is known at this
point because we know the location of
the two reference points within the real

Perl: Optical Character RecognitionPROGRAMMING

72 ISSUE 79 JUNE 2007 W W W. L I N U X- M A G A Z I N E . C O M

001 package LCDOCR;

002 use strict;

003 use Imager;

004 use Log::Log4perl qw(:easy);

005 use YAML qw(LoadFile);

006

 007 #############################

008 sub new {

009 #############################

010 my ($class, %options) = @_;

011

 012 my $refd =

013 LoadFile("/etc/fobs.yml")

014 ->{ $options{name} };

015 my $self = {

016 name => "RSA1",

017 threshold => 0.85,

018 debug => 0,

019 digits => $refd->{digits},

020 %options,

021 };

022

 023 # Adapt coordinates to real
image

024 my $stretch =

025 ref_dist($self) /

026 ref_dist($refd);

027 for (

028 qw(x_off y_off digit_width

029 digit_height digit_dist)

030)

031 {

032 $self->{$_} =

033 $refd->{$_} * $stretch;

034 }

035

 036 $self->{angle} = atan2(

037 $self->{y2_ref} -

038 $self->{y1_ref},

039 $self->{x2_ref} -

040 $self->{x1_ref}

041);

042

 043 bless $self, $class;

044 }

045

 046 #############################

047 sub ref_dist {

048 #############################

049 my ($h) = @_;

050 return sqrt(

051 (

052 $h->{x2_ref} -

053 $h->{x1_ref}

054)**2 + (

055 $h->{y2_ref} -

056 $h->{y1_ref}

057)**2

058);

059 }

060

 061 #############################

062 sub reco {

063 #############################

064 my ($self) = @_;

065

 066 my @digits;

067 my %seg_orient = qw(

068 1 h 2 v 3 v 4 h 5 v 6 v 7 h);

069

 070 for (1 .. $self->{digits}) {

071 my $coords =

072 $self->seg_coords($_);

073 my $segstring = "";

074

 075 my $bkground = (

076 xybrightness(

077 $self->{image},

078 @{ $coords->{8} }

079) + xybrightness(

080 $self->{image},

081 @{ $coords->{9} }

082)

083) / 2;

084

 085 for my $c (1 .. 7) {

086 my ($x, $y) =

087 @{ $coords->{$c} };

088

 089 if (

090 pixel_dark(

091 $self->{image},

092 $x,

093 $y,

094 $bkground,

095 $self->{debug},

096 $c,

097 $seg_orient{$c},

098 $self->{threshold}

099)

100)

101 {

102 $segstring .= "$c";

103 }

104

 105 if ($self->{debug}) {

106 my $red =

107 Imager::Color->new(255,

108 0, 0);

109 $self->{image}->circle(

110 color => $red,

111 r => 1,

112 x => $x,

113 y => $y

114);

115 }

116 }

117

 118 my $digit =

119 seg2digit($segstring);

120 push @digits,

121 defined $digit

122 ? $digit

123 : "X";

124 }

125

 126 return \@digits;

127 }

128

 129 #############################

130 sub seg_coords {

131 #############################

132 my ($self, $digit) = @_;

133

 134 my $x =

135 $self->{x_off} +

136 ($digit - 1) *

137 $self->{digit_dist};

138 my $y = $self->{y_off};

139 my $w =

140 $self->{digit_width};

 Listing 4: LCDOCR.pm

image. Rotation in a Cartesian coordi-
nate system is a bit tricky to calculate.
It’s easier to convert the Cartesian coor-
dinates to polar coordinates r and phi

(Figure 7). The radius r is calculated by
Pythagoras’ theorem and the angle of ro-
tation phi from the tangent of the quo-
tients of the Y and X values.

Line 204 then adds the known rota-
tional angle of the token to this angle
phi before the following lines convert
the coordinates back to Cartesian values

PROGRAMMINGPerl: Optical Character Recognition

73ISSUE 79 JUNE 2007W W W. L I N U X- M A G A Z I N E . C O M

001 package LCDOCR;

002 use strict;

003 use Imager;

004 use Log::Log4perl qw(:easy);

005 use YAML qw(LoadFile);

006

 007 #############################

008 sub new {

009 #############################

010 my ($class, %options) = @_;

011

 012 my $refd =

013 LoadFile("/etc/fobs.yml")

014 ->{ $options{name} };

015 my $self = {

016 name => "RSA1",

017 threshold => 0.85,

018 debug => 0,

019 digits => $refd->{digits},

020 %options,

021 };

022

 023 # Adapt coordinates to real
image

024 my $stretch =

025 ref_dist($self) /

026 ref_dist($refd);

027 for (

028 qw(x_off y_off digit_width

029 digit_height digit_dist)

030)

031 {

032 $self->{$_} =

033 $refd->{$_} * $stretch;

034 }

035

 036 $self->{angle} = atan2(

037 $self->{y2_ref} -

038 $self->{y1_ref},

039 $self->{x2_ref} -

040 $self->{x1_ref}

041);

042

 043 bless $self, $class;

044 }

045

 046 #############################

047 sub ref_dist {

048 #############################

049 my ($h) = @_;

050 return sqrt(

051 (

052 $h->{x2_ref} -

053 $h->{x1_ref}

054)**2 + (

055 $h->{y2_ref} -

056 $h->{y1_ref}

057)**2

058);

059 }

060

 061 #############################

062 sub reco {

063 #############################

064 my ($self) = @_;

065

 066 my @digits;

067 my %seg_orient = qw(

068 1 h 2 v 3 v 4 h 5 v 6 v 7 h);

069

 070 for (1 .. $self->{digits}) {

071 my $coords =

072 $self->seg_coords($_);

073 my $segstring = "";

074

 075 my $bkground = (

076 xybrightness(

077 $self->{image},

078 @{ $coords->{8} }

079) + xybrightness(

080 $self->{image},

081 @{ $coords->{9} }

082)

083) / 2;

084

 085 for my $c (1 .. 7) {

086 my ($x, $y) =

087 @{ $coords->{$c} };

088

 089 if (

090 pixel_dark(

091 $self->{image},

092 $x,

093 $y,

094 $bkground,

095 $self->{debug},

096 $c,

097 $seg_orient{$c},

098 $self->{threshold}

099)

100)

101 {

102 $segstring .= "$c";

103 }

104

 105 if ($self->{debug}) {

106 my $red =

107 Imager::Color->new(255,

108 0, 0);

109 $self->{image}->circle(

110 color => $red,

111 r => 1,

112 x => $x,

113 y => $y

114);

115 }

116 }

117

 118 my $digit =

119 seg2digit($segstring);

120 push @digits,

121 defined $digit

122 ? $digit

123 : "X";

124 }

125

 126 return \@digits;

127 }

128

 129 #############################

130 sub seg_coords {

131 #############################

132 my ($self, $digit) = @_;

133

 134 my $x =

135 $self->{x_off} +

136 ($digit - 1) *

137 $self->{digit_dist};

138 my $y = $self->{y_off};

139 my $w =

140 $self->{digit_width};

 Listing 4: LCDOCR.pm
141 my $h =

142 $self->{digit_height};

143 my $r = sub {

144 [$self->rotate(@_)];

145 };

146

 147 return {

148 1 => $r->($x, $y),

149 2 => $r->(

150 $x + $w / 2,

151 $y + $h / 4

152),

153 3 => $r->(

154 $x + $w / 2,

155 $y + 3 * $h / 4

156),

157 4 => $r->($x, $y + $h),

158 5 => $r->(

159 $x - $w / 2,

160 $y + 3 * $h / 4

161),

162 6 => $r->(

163 $x - $w / 2,

164 $y + $h / 4

165),

166 7 => $r->($x, $y + $h / 2),

167

 168 # ref points

169 8 => $r->($x, $y + $h / 4),

170 9 => $r->(

171 $x, $y + 3 * $h / 4

172),

173 };

174 }

175

 176 #############################

177 sub seg2digit {

178 #############################

179 my %h = (

180 "23" => 1,

181 "12457" => 2,

182 "12347" => 3,

183 "2367" => 4,

184 "13467" => 5,

185 "134567" => 6,

186 "123" => 7,

187 "1234567" => 8,

188 "123467" => 9,

189 "123456" => 0,

190);

191 return $h{ $_[0] };

192 }

193

 194 #############################

195 sub rotate {

196 #############################

197 my ($self, $xd, $yd) = @_;

198

 199 my $r =

200 sqrt(

201 $xd * $xd + $yd * $yd);

202

 203 my $phi = atan2($yd, $xd);

204 $phi += $self->{angle};

205

 206 my $xd_rot = $r * cos($phi);

207 my $yd_rot = $r * sin($phi);

208 my $x_abs =

209 $self->{x1_ref} + $xd_rot;

210 my $y_abs =

211 $self->{y1_ref} + $yd_rot;

212

 213 return ($x_abs, $y_abs);

214 }

215

 216 use Inline C =>

217 <<'EOT' => WITH =>
'Imager';

218

 219 int pixel_dark(Imager im,

220 int x, int y,

221 int threshold, int debug,

222 int seg, char *direction,

223 float percent) {

224

 225 i_color val;

226 int br, i, j, dark=0;

227 int min=-1, imin=0, imax=1,

228 jmin=0, jmax=1;

229 float rel;

230

 231 if(direction == 'h') {

232 jmin = -1; jmax = 2;

233 } else {

234 imin = -1; imax = 2;

235 }

236

 237 for(i=imin; i<imax; i++) {

238 for(j=jmin; j<jmax; j++) {

239 i_gpix(im, x+i,

240 y+j, &val);

241 br = brightness(&val);

242 if(min == -1 ||

243 min > br)

244 min = br;

245 }

246 }

247

 248 rel = 1.0*min/threshold;

249 if(rel < percent)

250 dark = 1;

251

 252 if(debug) {

253 printf("TH[%d]: %d "

254 "(%d %.1f%%: %d)\n",

255 seg, min, threshold,

256 rel*100.0, dark);

257 }

258 return dark;

259 }

260

 261 int brightness

262 (i_color *val) {

263 return((val->channel[0] +

264 val->channel[1] +

265 val->channel[2])/3);

266 }

267

 268 int xybrightness(Imager im,

269 int x, int y) {

270 i_color val;

271 i_gpix(im, x, y, &val);

272 return brightness(&val);

273 }

274

 275 EOT

276

 277 1;

Listing 4: LCDOCR.pm

by simple trigonometry (sine, opposite
leg, hypotenuse). This gives us the rota-
tion of the OCR mask about the center
of rotation [x1_ref, y1_ref].

The seg2digit() function determines
the digits by reference to a string of
sorted ordinals for the active segments.
Sorting facilitates access – if the script
determines that segments 2 and 3 of an
element are black, a call to seg2digit()
with 23 returns 1 after a simple hash
lookup, which is exactly what the dis-
play reads. If the segment numbers don’t
make sense and no digit can be recog-
nized, seg2digit() returns a value of
undef, and the main program converts
this to X. This tells you that you need to
adjust something (double-check the sen-
sors) or that the lighting conditions need
to be improved to increase contrast be-
tween the light background and the dark
segments.

If the display is not lit evenly, the light
background can have different bright-
ness values, and that makes it difficult
to choose a reliable threshold value to
distinguish between active and inactive
segments.

For this reason, the reco
method not only measures the
pixel brightness at the posi-
tions in which segments are
located, but at positions with-
out segments in the center of
the upper and lower rectan-
gles of the figure eight (see
Figure 4). These measurement
points – number eight and
nine – are interpreted by the
script as the mean value of
the background brightness of
a segment.

The threshold parameter
specifies how much darker than the back-
ground a measured value has to be for
the routine to decide that it is an active
segment. Let’s assume that threshold is
0.85 and the background has a mean
brightness value of 180. In this case, mea-
sured values of 153 or more would be
classified as background, that is, as inac-
tive LCD segments. Figure 8 shows how
the digit “0” is detected with a threshold
value of 0.85.

Active segments shown vary between
40.5 percent and 72.5 percent of the
mean background brightness value of
131. In contrast, the inactive segment 7
has a brightness value of 123, which
translates to 93.9 percent, slightly above
the threshold value of 85 percent.

To identify the black segments in the
display despite slightly displaced coordi-
nates, the pixel_dark function in the in-
line C code measures the current pixel
and neighboring pixels, and only takes
the darkest values as measurements. To
avoid measuring parts of the neighbor-
ing segment, the function measures val-
ues orthogonal to the segment. In the
case of horizontal segments, it inspects
the top and bottom pixels. In the case
of vertical segments, it investigates the
pixels to the left and right. The %segdir
hash specifies the position of every
segment by number to support this.

The brightness() function measures
the brightness of a pixel value, adding
the red, green, and blue components of
the measuring point to do so. xybright-
ness() calculates the brightness at a
given [x,y] coordinate.

The seg_coords($x, $y) function
provides the X/Y coordinates for all seg-
ments in a digit, given that the middle
of the top segment is located at the coor-
dinates $x and $y. The return value is a

pointer to a hash, which contains seg-
ment ordinals as keys and anonymous
arrays of X/Y coordinates as values.

If you enable the debug option, the
reco() function will draw the segment
coordinates in the image (Figure 3). Of
course, this happens after scanning be-
cause every single sensor would detect
a red pixel otherwise. This information
helps to fine tune the system.

Installation
To install, you need to download the re-
quired CPAN modules, Video::Capture::
V4l::Imager and YAML. The CPAN shell
will retrieve all other required modules.
You have to store the LCDOCR.pm mod-
ule somewhere that the reco module will
find it (for example, in /usr/lib/perl5/
site_perl). To capture the first image, you
then type fobcam. With the use of GIMP,
you can discover the reference points
and add the data for the display you are
using to the /etc/fobs.yml file, then
launch reco with the name of the stored
image file and the reference coordinates.

When adjusted correctly, the OCR sys-
tem should start detecting rows of digits
reliably, and you can start to evaluate
the results. Remember, if you want to
run the script at night, don't switch off
your table lamp! ■

Figure 8: The script has detected the digit 0;

the threshold parameter for disambiguating

between active and inactive segments is set

to 85 percent.Figure 6: The token’s angle of rotation can be derived

from the reference point coordinates.

Figure 7: Converting from Cartesian coordi-

nates to polar coordinates and back.

Perl: Optical Character RecognitionPROGRAMMING

74 ISSUE 79 JUNE 2007 W W W. L I N U X- M A G A Z I N E . C O M

[1] “000000” on a SecurID token:
http:// www. flickr. com/ photos/ ferg2k/
381185553/

[2] Fobcam: http:// fob. webhop. net/

[3] Michael Schilli, “Fishing for Images,”
http:// www. linux-magazine. com/
issue/ 68/ Perl_Controlling_a_Webcam.
pdf

[4] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 79

INFO

