
76

I
n California, two major competitors

currently offer Internet access to pri-

vate households: AT&T with broad-

band DSL and Comcast with broadband

Internet via the TV cable. A DSL or cable

modem picks up data off the wire, and

a router connects the machines on the

home network with the Internet (Figure

1). Both providers have their advantages

and disadvantages.

The cable solution suffers from too

many kids in the neighborhood playing

World of Warcraft because band-

width drops as more users join

the network. The Web

Hog! advertisement

[1] by DSL pro-

vider Southwestern Bell gives a humor-

ous illustration of how peaceful neigh-

bors in a small town can go nuts over-

night because they all suspect each other

of slowing down the Internet service.

DSL access via the phone company is

cheaper, assuming you go for the slow

basic version, and everyone gets the

same bandwidth. However, availability

and throughput depend on the distance

to the next node.

Neither of these providers is 100 per-

cent reliable and problems do occur. A

power outage, a sys admin asleep on the

job, a construction worker drilling into

a cable, and down goes the Internet – it’s

not a good situation if you need access

in a hurry.

When an Internet provider goes down, users suffer. Alternatively,

users can immediately switch to another ISP. We’ll show you a Perl

script that can help you reconfigure your computer to make the switch.

BY MICHAEL SCHILLI

Reconfigure your network connection with isp-switch

LIFELINE

Perl: isp-switchPROGRAMMING

H
a
n

n
e
s
 T

ie
tz

, F
o
to

lia

76

076-080_perl.indd 76 17.01.2008 14:12:07 Uhr

77

Considering that both DSL and cable-

based Internet cost about US$ 20 a

month, I decided to order both – if one

provider goes down, I just switch to the

other one on the fly.

The isp-switch script (Listing 1) [2]

expects either cable or dsl as a com-

mand-line parameter and performs the

steps needed for switching. In the isp-

switch script, line 12 determines the

 values these parameters can assume.

If the provider name is unknown, the

script quits after a call to pod2usage() to

output an error message along with a

short HOW-TO.

The soft reference – $switch_to->() –

in line 39 calls one of the functions de-

fined farther down: cable() or dsl().

To keep the Perl interpreter from com-

plaining about this dirty trick in strict

mode, the script has to reduce the strict-

ness level with no strict 'refs'. The eval

construct surrounding the call handles

any errors and allows the script to run

even if it cannot complete every single

step successfully. The script uses Log::

Log4perl for status and error messages;

the ALWAYS macro used in line 60 was

added in version 1.13, so line 9 asks for

at least this version.

Patch Me!

My Linux machine has a static 192.xxx

IP on the local network; that is, it does

not use DHCP. Fedora configures the de-

fault gateway – the router that sends re-

quests out onto the Internet – in /etc/

sysconfig/network. Figure 2 shows the

original content of the file. The gateway

is a G54-type device by Buffalo, which

originally cost US$ 30 and has reliably

connected the internal network in the

Perlmeister Studio with the DSL modem,

and thus the Internet, for years.

If I need to switch to the cable connec-

tion because of a DSL outage, the default

gateway setting needs to change to point

to a different router with the static IP

192.168.10.98.

How can I modify the configuration

files and save the original state to be

able to restore it at any time?

The CPAN Config::Patch module adds

patches to system configuration files and

stores the original content as a Base 64-

encoded comment inline. If you remove

the patch later, the module reads the

Base 64 encoding, extracts the original

text, and restores it.

Figure 3 shows the network file after

applying the patch. The gateway_patch

function defined in line 74 expects the IP

address for the gateway as a parameter.

The name of the file to patch and a key

are passed to the Config::Patch object’s

constructor. Typically, this string is the

project or application name.

The keys allow the module to distin-

guish between different patches for the

same file and to process them separately.

The module marks patched areas as no-

go areas to prevent overlapping patches.

Config::Patch can optionally apply

patches at the start of a file, between

two lines, or at the end of the file. The

replace method will even replace a line

or part of a line that you reference by

means of a regular expression with a

 replacement line. The method call

$patcher->replace(

 qr(^GATEWAY=.*)m,

 "GATEWAY=$ip");

searches for a line that starts with GATE-

WAY=. Because the file might contain

PROGRAMMINGPerl: isp-switch

77ISSUE 88MARCH 2008

Figure 1: A view of the home network at the Perlmeister Studio.

Router 1

Router 2

DSL Modem

Cable Modem

X10

Linux

Windows

...

Figure 2: The original version of /etc/ sysconfig/ network before apply-

ing the patch.

Figure 3: Modified configuration file after patching via the Config::

Patch module.

076-080_perl.indd 77 17.01.2008 14:12:15 Uhr

Perl: isp-switchPROGRAMMING

78 ISSUE 88 MARCH 2008

001 #!/usr/bin/perl -w

002 use strict;

003 use Getopt::Std;

004 use Pod::Usage;

005 use Sysadm::Install qw(:all);

006 use Config::Patch;

007 use Buffalo::G54;

008 use X10::Home;

009 use Log::Log4perl 1.13

010 qw(:easy);

011

 012 my @isps = qw(cable dsl);

013 my ($switch_to) = @ARGV;

014

 015 Log::Log4perl->easy_init(

016 $INFO);

017

 018 if (!defined $switch_to) {

019 pod2usage(

020 "Which ISP to switch to?");

021 }

022

 023 if (

024 !grep { $_ eq $switch_to }

025 @isps) {

026 pod2usage(

027 "Unknown isp, use ",

028 join(", ", @isps)

029);

030 }

031

 032 my $x10 = X10::Home->new();

033

 034 my $P =

035 password_read(

036 "Router password: ");

037

 038 no strict 'refs';

039 eval { $switch_to->(); };

040 network_restart();

041

 042 #############################

043 sub dsl {

044 #############################

045 gateway_patch(

046 "192.168.10.1");

047 $x10->send("bridge",

048 "off");

049 dhcp("on");

050 }

051

 052 #############################

053 sub cable {

054 #############################

055 gateway_patch(

056 "192.168.10.98");

057 $x10->send("bridge",

058 "on");

059 dhcp("off");

060 ALWAYS "Waiting for ",

061 "bridge to start up";

062 sleep 20;

063 }

064

 065 #############################

066 sub network_restart {

067 #############################

068 tap "sudo",

069 "/etc/rc.d/init.d/network",

070 "restart";

071 }

072

 073 #############################

074 sub gateway_patch {

075 #############################

076 my ($ip) = @_;

077

 078 my $patcher =

079 Config::Patch->new(

080 file =>

081 "/etc/sysconfig/network",

082 key => "isp-switch",

083);

084

 085 if ($patcher->patched()) {

086 # patched already?

087 # Remove old patch

088 $patcher->remove();

089 }

090

 091 $patcher->replace(

092 qr(^GATEWAY=.*)m,

093 "GATEWAY=$ip"

094);

095 }

096

 097 #############################

098 sub dhcp {

099 #############################

100 my ($onoff) = @_;

101

 102 DEBUG

103 "Setting dhcp to $onoff";

104

 105 my $b =

106 Buffalo::G54->new();

107 DEBUG "Connecting";

108 $b->connect(

109 password => $P);

110

 111 if (defined $onoff) {

112 INFO

113 "Setting DHCP to $onoff";

114 $b->dhcp($onoff);

115 }

116

 117 INFO "DHCP is now ",

118 $b->dhcp()

119 ? "on" : "off";

120 }

121

 122 __END__

123

 124 =head1 NAME

125

 126 isp-switch - Cable or DSL?

127

 128 =head1 SYNOPSIS

129

 130 isp-switch [dsl|cable]

131

 132 =head1 DESCRIPTION

133

 134 isp-switch switches between

135 Comcast cable and Pacbell

136 DSL.

137

 138 =head1 AUTHOR

139

 140 2007, Mike Schilli

141 <cpan@perlmeister.com>

Listing 1: isp-switch

076-080_perl.indd 78 17.01.2008 14:12:19 Uhr

http://www.linux-magazine.com/DigiSub

Wherever you go...

...Linux Magazine
goes with you !

Read Linux Magazine anywhere with a Digital Subscription.

Access articles by logging into our site and downloading PDF fi les.

Find the Linux solutions you need with an easy keyword search.

Maintain your own paperless archive for convenient offl ine reading.

076-080_perl.indd 79 17.01.2008 14:12:23 Uhr

multiple lines, the /m is important to

make sure that the meta character ^ re-

ally does find all beginnings of lines and

not just the first. Config::Patch encodes

the gateway line as its way of “remem-

bering” before going on to comment out

the line and replace it with a gateway

entry containing the new IP address.

Calling $patcher->remove() converts

the file back into its original state; the

patcher only needs the file name and the

key, both of which are available in the

object constructor. The patched()

method checks whether the file has been

patched with the specified key and, if so,

returns a value of true.

Power on Command

The cable router is switched off while

the Internet connection is managed via

DSL. To switch the cable router on, I can

use the X10 interface and the CPAN X10::

Home module.

Figure 4 shows the

entry in /etc/x10.conf,

which allows me to ad-

dress the cable router as

cable_router.

Both routers are the

same type and both pro-

vide DHCP services.

When a computer logs on to my home

network, it is automatically assigned a

dynamic IP and knows which DNS

server it has to contact to resolve host-

names. However, two DHCP servers of-

fering the same service at the same time

cause no end of trouble. Furthermore, I

don’t want the computers to use the old

router for cable operations but, instead,

to contact the new DHCP server with its

cable gateway. For

this reason, the Buf-

falo::G54 CPAN mod-

ule contacts the rout-

er’s configuration in-

terface and messes

around with screen-

scraping techniques

with the WWW::

Mechanize module

until it has finally

disabled the DHCP

server on the DSL

router. To do this, it

needs the router’s

administrative pass-

word; isp-switch

calls the password_

read() function from

the Sysadm::Install CPAN module to

prompt the user to enter the password.

In the opposite case, when the dsl op-

tion is provided to restore the DSL-based

connection, the script enables the DHCP

server on the DSL router and rigorously

powers off the cable router using X10.

Because it takes awhile for the new

router to power up completely, isp-

switch sleeps for 20 seconds before initi-

ating any more activities.

Restart

Computers with dynamic addresses

query the DHCP server to pick up a new

IP address after a restart of

the network system.

The Linux box with the

static IP also has to re-

launch its network initial-

ization script to prevent it

from sending requests to

the old gateway.

To allow this to happen,

isp-switch runs the Linux

startup script /etc/rc.d/

init.d/network with the

 restart parameter.

This requires root privi-

leges, but a NOPASSWD

entry for the script in /etc/

sudoers (Figure 5) allows

the non-privileged user

mschilli to reinitialize the network. The

tap function from the endless treasure

troves of the Sysadm::Install CPAN mod-

ule executes the command and absorbs

its output.

These three measures allow isp-switch

to switch back and forth between the

two Internet providers. Although this

makes Internet access twice as expen-

sive, it is also twice as reliable.

As an alternative, you could deploy

a third router that worked as a gateway

and forward requests either to the cable

router or DSL router. It could run on a

Linux PC or on a WRT54GL-type Linksys

router running on FreeWRT.

If you like, you could program a Nag-

ios plugin to regularly check the Internet

connection and automatically switch to

another provider whenever a problem

occurs, hopefully without the end user

being any wiser. �

Perl: isp-switchPROGRAMMING

80 ISSUE 88 MARCH 2008

[1] “Web Hog” by Southwestern Bell:

http://www.youtube.com/

watch?v=ubc7zFSyEbg

[2] Listings for this article:

ftp:// www. linux-magazin. de/ pub/

 listings/ magazin/ 2007/ 11/ Perl

INFO

Figure 4: The cable_router entry in /etc/ x10.conf lets X10::

Home use an intuitive name to address the cable router.

Figure 5: An entry in /etc/ sudoers lets user mschilli start

the network and bring it down.

Michael Schilli works

as a Software Devel-

oper at Yahoo!,

Sunnyvale, Cali for -

nia. He wrote “Perl

Power” for Addison-

Wesley and can be

 contacted at mschilli@ perlmeister.

com. His homepage is at

http:// perlmeister. com.

T
H

E
 A

U
T

H
O

R

Figure 6: The Comprehensive Perl Archive Network (CPAN) is the

source for many of the Perl modules discussed in this column.

076-080_perl.indd 80 17.01.2008 14:12:28 Uhr

