
hether guessthelogo.com asks

you to pick the right company

logo out of strikingly similar

variations, or Food.aol.com invites visi-

tors to identify candy bars by their cross

sections (Figure 1), an entertaining quiz

is always welcome during a hard day at

work. You can expect your colleagues to

forward the URLs, and comparing scores

later on will mix up the hacking order

and trigger fascinating discussions.

Are you interested in compiling your

own quiz? Figure 2 shows our home-

made quiz at work. To make the code

 reusable, the application retrieves the

questions and multiple choice answers

from a YAML file (Figure 3). The exam-

ple uses a selection of questions from

the USA immigration test. For example,

applicants need to know how many stars

are displayed on the US flag and what

they symbolize [4].

The web application parses

the YAML file and displays each

question individually on a new

page. Whereas the YAML file

 always lists the correct answer

first, the application will display

possible choices in random

order to keep things interesting.

The implementation is not

particularly sophisticated, but

there are quite a few things to

think about: nicely designed

HTML with dynamically man-

aged fields, session manage-

ment between the individual

questions to prevent the applica-

tion from forgetting the user's score,

and a results page that tells the user

the final score and invites them to

try the next round (Figure 4). Fi-

nally, the server should never trust

the client, because the client just

might cheat.

The Catalyst Framework [5] helps

Perl programmers with projects of

this kind by automatically creating

a program code skeleton to which

the developer simply adds the applica-

tion-specific components.

The fact that the system gets split up

into the model (data representation),

view (HTML display), and controller

(flow control), has proven to be very ef-

fective in web application development,

Catalyst is the Ruby on Rails of the Perl

universe. When you are developing a

web application like a quiz, using the

MVC framework is really convenient

and helps keep the underlying

components cleanly separated.

BY MICHAEL SCHILLI

Perl: Q&A for the Web

76 ISSUE 96 NOVEMBER 2008

076-080_perl.indd 76 11.09.2008 14:17:37 Uhr

as it supports clear code separation and

thus easier maintenance.

The Catalyst modules are available from

CPAN. Because of their sheer number,

I recommend downloading a prebuilt

package. On a Debian-based system, the

command line

sudo apt-get install libcatalyst-perl

libcatalyst-modules-perl

installs all the modules and a bunch of

dependencies. To avoid having to start

from scratch, call catalyst.

pl QuizShow from the

command line and Cata-

lyst creates a new Quiz-

Show directory for the

newly created application.

It drops about 30 files into

various subdirectories to

let you run the whole

 enchilada straight away.

Among other things, this

includes a Makefile.PL file,

to package the application

CPAN-style, predefined

configuration files, module

skeletons to fill in appli-

cation-specific code, and

various scripts to create

new parts and launch the

application in different

ways.

Later, you can run it as

a CGI script or using Mod_

perl on an Apache server.

During development, you

might like to launch the

web server included with

the distribution:

cd QuizShow

script/quizshow_server.pl

This immediately launches

the server as shown in Fig-

ure 5 and outputs nicely

formatted information on

the server configuration

and the URL at which the

browser can reach it.

The default setting is

http://localhost:3000. If

you enter it in a browser,

you get to see the Catalyst

welcome page. Production

systems will later use an Apache server

instead.

When a browser communicates with a

web server, neither of them saves state

between individual requests, unless ses-

sion cookies and server-side session files

take care of it explicitly. A quiz that for-

gets the score between questions

wouldn't be all that useful.

Session management is boilerplate

logic, and it's easy to get wrong, so Cata-

lyst offers a turn-key solution, again as a

Debian package.

The following command line installs

the required Perl modules:

sudo apt-get install

libcatalyst-plugin-

session-fastmmap-perl

To make sure the quiz automatically

feeds a session cookie to the browser on

first contact, besides allocating a cache

server-side and storing user data in that

space, you need to change the code

use Catalyst qw/-Debug

ConfigLoader Static::Simple/;

01 #####################################

02 package QuizShow::Controller::Quiz;

03 # Mike Schilli, 2008 (m@perlmeister.com)

04 #####################################

05 use strict;

06 use warnings;

07 use base 'Catalyst::Controller';

08

 09 #####################################

10 sub quiz : Global {

11 #####################################

12 my ($self, $c, @args) = @_;

13

 14 if((@args and $args[0] eq "reset") or

15 !defined $c->session->{next_question} or

16 $c->session->{"next_question"} == -1

17) {

18 $c->session->{"next_question"} = 0;

19 $c->session->{"score_ok"} = 0;

20 $c->session->{"score_nok"} = 0;

21 $c->session->{"total"} =

22 $c->model('Questions')->total();

23 $c->response->redirect($c->uri_for());

24 $c->detach();

25 }

26

 27 if(my $answer =

28 $c->req->param("answer")) {

29

 30 if($answer ==

31 $c->session()->{"correct_answer"}) {

32

 33 $c->session()->{"score_ok"}++;

34 } else {

35

 36 $c->session()->{"score_nok"}++;

37 }

38 }

39

 40 my $next_question =

41 $c->session()->{"next_question"} || 0;

42

 43 $c->stash->{template} = 'quiz.tt';

44

 45 my ($question, @answers) =

46 $c->model('Questions')->

47 get_question($next_question);

48

 49 if(defined $question) {

50 @answers = map { [$_, 'incorrect'] }

51 @answers;

52 $answers[0]->[1] = 'correct';

53

 54 my $correct_answer;

55 my $i = 0;

56

 57 while (@answers) {

58 my $pick = splice(@answers,

59 rand @answers, 1);

60 push @{ $c->stash->{answers} },

61 { text => $pick->[0],

62 num => ++$i};

63

 64 $c->session()->{"correct_answer"}= $i

65 if $pick->[1] eq 'correct';

66 }

67 $c->session()->{"next_question"} =

68 $next_question + 1;

69 } else {

70 $c->session->{next_question} = -1;

71 }

72

 73 $c->stash->{question} = $question;

74

 75 for(qw(total score_ok score_nok

76 next_question)) {

77 $c->stash->{ $_ } =

78 $c->session()->{ $_ };

79 }

80 }

81

 82 1;

Listing 1: Ctrl-Quiz.pm

Perl: Q&A for the Web

77ISSUE 96NOVEMBER 2008

076-080_perl.indd 77 11.09.2008 14:17:37 Uhr

in the automatically generated lib/Quiz-

Show.pm file to:

use Catalyst qw/-Debug ConfigLoader

Static::Simple Session

Session::State::Cookie

Session::Store::FastMmap/;

This allows the application to access

a Perl hash with session information by

simply calling the Catalyst context ob-

ject's session() method. Catalyst stores

this data automatically under the session

ID of the Catalyst browser cookie and

manages it on the server without requir-

ing any development effort.

Of course, this approach will only

work if the browser talks to the same

server for each new request, and not to

an arbitrary member of a server farm.

Catalyst offers database-based sessions

for more complex configurations to han-

dle this.

Perl's Template Toolkit [6] helps imple-

menting the “View” part of the Catalyst

MVC. It defines a template language,

which is deliberately kept simple and al-

lows users to define dynamic fields in

static HTML. Although it supports sim-

ple programming logic, such as condi-

tions or loops, it deliberately avoids the

features of a full-fledged programming

language because inexperienced devel-

opers tend to add more code in the view

layer, instead of relying on a clear sepa-

ration of the flow controller and the

view. The command

script/quizshow

create.pl

view TT TT

using the included

quizshow_create.pl

Catalyst helper

script adds the lib/

QuizShow/View/

TT.pm module to

the directory tree

created previously.

The first TT repre-

sents the name of

the module cre-

ated here (TT.pm);

the second one

ensures that the

latter is a class de-

rived from the Template Toolkit View.

Alternatively, Catalyst supports the

Mason and HTML::Template toolkits.

Catalyst also tells the TT.pm module

to se the Template Toolkit processor to

handle files ending with .tt before the

web server delivers them. Figure 6

shows the quiz.tt template, which must

reside in the root directory of the newly

created Catalyst project.

First, the [% IF %] condition written

in Template Toolkit syntax checks to see

whether more questions exist. If not, the

browser displays the final score, other-

wise it uses the Template variables

score_ok and score_nok to display the

current score and the number of ques-

tions left.

The template then outputs the current

question and uses the FOREACH loop

to iterate through the randomly ordered

answers and present them as clickable

radio buttons.

The Submit button sends the web

form to the web server at the original

URL because the HTML doesn't specify

a form URL.

To define the application's control flow,

you also need a Quiz.pm Controller:

script/quizshow_create.pl

controller Quiz

This command line creates the lib/Quiz-

Show/Controller/Quiz.pm file, to which

you need to add the code shown in List-

ing 1, Ctrl-Quiz.pm.

Perl: Q&A for the Web

78 ISSUE 96 NOVEMBER 2008

076-080_perl.indd 78 11.09.2008 14:17:39 Uhr

Quiz.pm defines the quiz() method,

which has the :Global attribute. This

 allows Catalyst to catch any requests

below the http://localhost:3000/quiz

URL and pass any subsequent paths in

to the application as the @args parame-

ter. For example, if the user adds /quiz/

reset to the URL, Catalyst calls the quiz()

method and sets the first element of

@args to reset.

On /reset, the quiz() resets the session

data to zero and asks the browser to re-

direct to the application start page. This

changes the URL displayed in the

browser from /quiz/reset to /quiz; the

controller sets the counter for right and

wrong answers to 0, and a new quiz can

begin.

The Catalyst object’s uri_for() method

generates absolute URLs from URLs en-

tered relative to the application root, al-

lowing the browser to redirect to them.

The redirect() method itself only sets

an http header, but does not interrupt

the control flow; this is what makes the

$c->detach() that follows in Line 24 so

important.

This causes Catalyst to finish processing

the request. Incidentally, this is a practi-

cal method of stopping the control flow,

even if you are in the middle of a nested

loop construction. The $c variable points

to the Catalyst system’s context object; it

is added to the controller’s methods with

the call and is useful for retrieving al-

most anything from the depths of the

Catalyst system.

The Catalyst object’s $c’s session()

method reveals the session hash, which

is made persistent by cookies and server-

side storage, including the entries next_

question (index of the next question to

be asked in the YAML array), score_ok

(the number of questions answered cor-

rectly), score_nok (the number of ques-

tions answered incorrectly), total (total

number of questions), and correct_an-

swer to let the server know which of the

randomly ordered answers is the right

one for the question just posed.

Catalyst uses

$c->req->param("answer")

in line 28 to retrieve the answer form pa-

rameter provided by the browser from

the request object. This number is equiv-

alent to the number 1, 2, or 3 for the

radio button clicked by the user to select

an answer. If the value matches the

value stored in the session hash on the

server before the web page was served

up, the response was correct, and the

controller increments the score_ok ses-

sion variable.

In line 43 the controller

defines quiz.tt as the tem-

plate and then stores vari-

able values in the template

stash. If the controller sets

$c->stash->{score _ok},

the template processor

will replace the template

entry [% score_ok %] with

the value determined in

the controller.

Stash variables can be

arbitrarily nested data

structures; for example,

the stash entry answers

contains a pointer to an

array whose elements in

01 ###

02 package QuizShow::Model::Questions;

03 # Mike Schilli, 2008 (m@perlmeister.com)

04 ###

05 use strict;

06 use warnings;

07 use base 'Catalyst::Model';

08 use YAML qw(LoadFile);

09

 10 my $FILE = "/home/mschilli/data/quiz.yml";

11

 12 ###

13 sub total {

14 ###

15 my $yml = LoadFile $FILE;

16 return scalar @$yml;

17 }

18

 19 ###

20 sub get_question {

21 ###

22 my($m, $index) = @_;

23

 24 my $yml = LoadFile $FILE;

25 return undef if $index > $#$yml;

26 return @{ $yml->[$index] };

27 }

28

 29 1;

Listing 2: Mod-Questions.pm

Perl: Q&A for the Web

79ISSUE 96NOVEMBER 2008

076-080_perl.indd 79 11.09.2008 14:17:40 Uhr

turn are pointers to hashes, which con-

tain the text and number of an answer

indexed by the text and num keys.

The quiz.tt template iterates over this

array to display all possible answers. It

assigns an alias named answer to the

currently processed element and then

uses [% answer.text %] and [% answer.

num %] to access the underlying hash

entries – that's a very practical template

toolkit feature that saves a lot typing.

Lines 50 to 52 create a data structure

from the answer array extracted from the

YAML file. The array assigns a correct tag

to the first entry, and incorrect to all oth-

ers. To display the answers in random

order, the while loop in line 57 picks up

a random element from this array of ar-

rays. If this is the answer tagged as cor-

rect, the controller remembers the num-

ber for the session hash later on.

Lines 60 to 62 generate a hash with

the text and num entries from the an-

swer and pushes it to the end of the

answers stash. The quiz.tt template picks

up the data and dynamically creates the

HTML output.

Catalyst normally relies on database-

backed data models; however, in this

case the data is stored in a YAML file.

It isn't too difficult to define your own

model. The line

script/quizshow_create.pl

model Questions

creates the lib/QuizShow/Model/Ques-

tions.pm file, which you need to popu-

late with the code shown in Listing 2,

Mod-Questions.pm.

The YAML file in Figure 3 defines an

array of entries for each question posed

by the test. Comment lines starting with

are ignored. The individual array en-

tries start with a hyphen, and comprise

sub-arrays with four elements each: the

wording of the question, followed by the

right answer, and two incorrect answers.

The $FILE variable in Listing 2 defines

the path to the YAML file. The total()

method parses the data and returns the

total number of questions to allow the

web application to display the number

of questions remaining. total() provides

the YAML array in a scalar context to

this end; this returns the array length

in Perl.

The get_question() method in line 20

retrieves the questions and answers for

an array index (0 to n-1) and returns

them as a list. If the index does not point

to a valid entry, it returns undef. This is

the signal to the online quiz that it has

run out of questions and has to display

the final score.

If the controller wants to access the

encapsulated data model, it grabs the

Catalyst object and calls $c->model

('Questions'). This gives it an instance

of the Questions data model whose get_

question() and total() methods it can

then use.

To install the ready-to-run Catalyst appli-

cation on the production server, simply

enter the typical three commands for

CPAN modules in the project directory:

cd QuizShow

perl Makefile.PL

make install

Catalyst then injects the modules, tem-

plates, and scripts required by the appli-

cation into the Perl hierarchy defined on

the used platform.

Instead of the Perl server included by

the distribution, I would recommend

using a Mod_perl installation to allow

Apache 2 to execute the program more

quickly:

PerlModule QuizShow

<Location />

 SetHandler modperl

 PerlResponseHandler QuizShow

</Location>

An Apache 1.3 configuration also is

described by the exhaustive Catalyst

documentation. If speed is not an issue,

there is also a CGI script that Catalyst in-

stalls as quizshow_cgi.pl. If you drop the

script into the web ser-ver's CGI direc-

tory and enter the URL http://localhost/

cgi/quizshow_cgi.pl/quiz, the quiz

launches.

If you migrate from the test server to

the web server, note that the sessions re-

side below the /tmp/quizshow directory

and the web server will normally run

under a different user account. If you

modify the user privileges correspond-

ingly, the new server can just go on

using the old session store.

Apache 2 and Mod_perl 2 cause a simi-

lar problem. The Perl module is easily in-

stalled on Ubuntu using the libapache2-

mod-perl2 and libcatalyst-engine-apache-

perl packages, however, Session::Store::

FastMmap complains that it can't handle

threads. The alternative

Session::Store::File works perfectly; just

modify lib/QuizShow.pm accordingly.

Unfortunately, Apache 2 uses the root

account to create the directories and is

unable to access them later when it

spawns non-privileged child processes.

sudo chown -R www-data /tmp/quizshow

solves the problem by assigning the

ownership of the session store to the

web server user (can also be nobody).

Catalyst has much more to offer than

just the functions I discussed. It is

equally suited to small or large projects,

in which team members split up the

work to focus on different areas of the

project. It offers a mature test framework

that is automatically generated when

you create a new project. Dynamic Ajax

web pages are also supported. With this

approach, the web application uses an

extension module to send, for example,

Json data to browser-side Javascript –

and a cozy Web 2.0 feeling ensues be-

cause page reloads are no longer neces-

sary to refresh the display.

Besides the online manual and tutori-

als [4], the book Catalyst [6] offers a

very useful overview, although it is not a

perfect reference manual as it lacks both

an index and the in-depth detail a refer-

ence book requires. p

[1] Listings for this article: http:// www.

 linux-magazine. com/ resources/

 article_code

[2] Candy bar identification: http:// food.

 aol. com/ play-with-your-food/

 candy-bar-id-quiz/ ? u

[3] US citizenship test: http:// www.

 washingtonpost. com/ wp-srv/

 national/ longterm/ citizen/ citizen. htm

[4] Catalyst: http:// www.

 catalystframework. org

[5] Template toolkit: http://

 template-toolkit. org

[6] Catalyst, by Jonathan Rockaway:

http:// www. packtpub. com/

 catalyst-perl-web-application/ book

INFO

Perl: Q&A for the Web

80 ISSUE 96 NOVEMBER 2008

076-080_perl.indd 80 11.09.2008 14:17:40 Uhr

