
The end of the credit crunch is
nigh; time to apply for a new job!
Once the economy gets back into

gear, corporations will again have money
burning holes in their pockets. And, to
land the job of their dreams, candidates
will have to dust off their CVs and bone
up on questions posed at job interviews.

Bowling Ball Drop
A popular question that software compa-
nies in Silicon Valley love to ask appli-
cants for programming jobs is this:
Given two identical bowling balls – from
which floor of a 100-story building could
you drop either of them without it break-
ing? The idea of this task is to minimize

the number of drop attempts required in
the worst case.

A naive method would be to start on
the first floor, drop the ball, and see if it
survives. If it does, you would repeat the
experiment on the second floor and
slowly work your way up to the 100th
floor. In the worst case, that is, if the
bowling balls were tough enough to sur-
vive a drop from the 100th floor, you
would need 100 drops to find the result.

Recall that you have two bowling
balls, and you’re allowed to break both
of them, but you need to identify the
critical floor precisely when you break
the second one. (Hint: 15 attempts are
all you should take – unless you want to
fail the aptitude test and look for a job
elsewhere.)

If you think you have what it takes to
become a software developer in Silicon
Valley, stop reading now, imagine the
not totally stress-free scenario of a job
interview, and keep your cool while you
work through the options in your head.
The clock’s ticking …

The Decisive Trick
As I mentioned previously, a linear ap-
proach will solve the problem, but it
takes far too many iterations. A binary

search would be similar: If you divide
the 100 floors by two and drop the first
ball from the 50th floor, you would need
49 further drops to find the critical floor
in a worst case scenario. After all, you’re
not allowed to break the second ball, if
you don’t have the answer afterwards.

The trick here is to divide the 100
floors into stretches of gradually decreas-
ing size (Figure 1). The first stretch has a
length of n floors, the second n – 1, the
third n – 2, and so on, until one stretch
includes the 100th floor. Using this divi-
sion, you would work your way through
the stretches from left to right, dropping
the first bowling ball from the first floor
of the stretch you are currently working
on. If the ball breaks, you would drop
the second ball from the second floor in
the previous stretch (if this exists) until
it breaks, or you reach the end of the
stretch. This identifies the critical floor
before you run out of balls.

The interesting property about the di-
vision shown in Figure 2 is that it always
limits the number of attempts to identify
the critical floor to a maximum of n + 1,
no matter where the ball eventually
breaks. If the critical point is, say, the
last floor in the first stretch, the first ball
would break on the second drop all told,

Hardly anyone writes complicated algorithms anymore, but aptitude tests often require that candidates have

the theory on tap. By Michael Schilli

Perl script helps users survive aptitude tests

Bowling for Perl

Figure 2: Dividing the 100 floors into stretches of continually decreasing size.

n n-1 n-2 n-3 n-4 n-5 ...

Figure 1: From which floor will the bowling

ball survive the drop? Given 100 floors and a

total of two balls, a maximum of 15 attempts

will suffice.

th
em

a
ster4

4
4

, P
ix

elio.d
e

Perl: Aptitude TestProgramming

72 ISSUE 110 January 2010

from the first floor of the second stretch.
After this, the researcher would drop the
second ball from the second to the nth
floor of the first section. It would survive
until the end, giving you n as the highest
floor. The number of attempts here is
two with the first ball, and n – 1 with the
second, giving you a total of n + 1.

If the critical floor is the last floor in
the fifth stretch, which has a length of n
– 4, the first ball would break on the
sixth attempt, from the first floor of the
sixth stretch. Then, you only need n – 4
– 1 attempts to try the remaining floors
in the fifth stretch because this stretch
has a length of n – 4 and you previously
tried the first floor without breaking the
ball. The maximum number of attempts
if the last ball drops safely from the last

floor in stretch five is 6 + n – 4 – 1 (i.e.,
n + 1).

Searching for n
The algorithm is perfectly clear and per-
forms at or better than n + 1 attempts in
the worst case. But how do you decide
on the value of n for a building with 100
floors? The task is to reduce the maxi-
mum number of attempts to a minimum,
so this means that small values for n are
preferred. However, the size of the
stretches start at n drops in steps of 1,
and if a stretch has a value of 1, without
the sum total of all stretches reaching
100, you’ve run short.

Thus, the sum total of n + (n – 1) +
(n – 2) + … + 1 should be precisely
100 if possible. It can be above 100, but
not below it. As you might be aware, the
German mathematician Carl Friedrich
Gauss presumably defined a formula for
this series of numbers while he was still
a kid. His teachers asked him to add up

the numbers between 1 and 100, and the
genial Gauss told them the answer
within seconds without performing a
single addition [1].

So, according to Gauss, n(n + 1)/​2
>= 100. This leads to a quadratic equa-
tion, and the only positive solution for it,
on the basis of the boilerplate math I
was taught in school, is 13.65. Figure 3
shows how I solved it on my white-
board. The smallest acceptable value for
n is thus 14, and Figure 4 shows the de-
rived distribution of the floor stretches I
was looking for.

Molded in Perl
The bball-drop program in Listing 1
shows an implementation of the algo-
rithm in Perl [3]. Line 10 determines the
value for n by solving the quadratic
equation and rounds up the resulting
floating point value to the next integer
with the ceil() function from the POSIX
module.

Figure 3: The condition turns into a qua-

dratic equation that can be solved via a well-

known formula [2].

Figure 4: When n = 14, the floors divide into these stretches.

01 �#!/usr/local/bin/perl ‑w

02 �use strict;

03 �use POSIX qw(ceil);

04 �use Log::Log4perl qw(:easy);

05

�06 �Log::Log4perl‑>easy_init(

07 � $INFO);

08 �my $total = 100;

09

�10 �my $n = ceil(

11 � (‑1 +

12 � sqrt(1 + 4 * 2 * $total)

13 �) / 2

14 �);

15

�16 �my $sum = 1;

17 �my @stops = ();

18 �push @stops, $sum;

19

�20 �while ($sum + $n <= $total) {

21 � push @stops, $sum + $n;

22 � $sum += $n;

23 � $n‑‑;

24 �}

25

�26 �my $last_ok_floor = (

27 � defined $ARGV[0] ?

28 � $ARGV[0] : 42);

29

�30 �INFO "Pst, pst: Highest OK ",

31 � floor is ", $last_ok_floor;

32

�33 �my $tries = 0;

34 �my $ok_floor = 1;

35 �my $smash_floor = $total + 1;

36

�37 �for my $stop (@stops) {

38

�39 � $tries++;

40 � if (!try_floor(

41 � $stop, $last_ok_floor)) {

42 � $smash_floor = $stop;

43 � last;

44 � }

45 � $ok_floor = $stop;

46 �}

47

�48 �for my $try_floor (

49 � $ok_floor + 1 ..

50 � $smash_floor ‑ 1) {

51

�52 � $tries++;

53 � if (!try_floor(

54 � $try_floor, $last_ok_floor

55 �)) {

56 � $smash_floor = $try_floor;

57 � last;

58 � }

59 � $smash_floor =

60 � $try_floor + 1;

61 �}

62

�63 �INFO "Highest OK floor: ",

64 � $smash_floor ‑ 1,

65 � " ($tries tries)";

66

�67 �#############################

68 �sub try_floor {

69 �#############################

70 � my ($floor, $last_ok_floor)

71 � = @_;

72

�73 � if($floor > $last_ok_floor){

74 � INFO "Floor $floor: ",

75 � "Wham, busted!";

76 � return 0;

77 � }

78

�79 � INFO "Floor $floor: Okay.";

80 � return 1;

81 �}

Listing 1: bball-drop

ProgrammingPerl: Aptitude Test

73ISSUE 110January 2010

The while loop in lines 20-24 then cre-
ates an array, @stops, whose elements
are set to the number of the first floor in
a particular stretch. That is, for n = 14,
@stops contains the values 1, 15, 28, …,
91, 96, 100. The script calls the last floor
from which the bowling ball survives the
drop the Highest OK floor and accepts
this number at the command line for test
purposes (you would call the script by
entering bball‑drop 99 to test the sce-
nario in which the bowling balls can sur-
vive floor 99, for example, but no
higher), or it defaults to the value of 42
set in line 28.

Log4perl in line 30 whispers the value
to be discovered by the algorithm (Pst,
pst) to the caller, then the script starts to
work through the individual test cases.
The for loop in lines 37-46 goes to the
start of a stretch in the @stop array and
calls the try_floor() routine with the
floor to test and the secret maximum
floor as arguments. If the tested height is

greater than the
maximum height,
try_floor() returns
a false to signify
that the bowling
ball you dropped

has shattered into a thousand pieces.
If the for loop in lines 37-46 finds a

floor that the first ball does not survive,
it terminates by calling last and sets the
$smash_floor variable to the floor that
caused the damage. The algorithm then
continues, with the next for loop in lines
48-61 taking the next floor from the
stretch with the last successful drop and
climbing up one floor at a time until the
second ball bites the dust, or the end of
the stretch is reached. If the ball breaks,
the loop terminates with last, and the re-
sult is available in $smash_floor. Reduc-
ing this value by 1 gives you the highest
floor from which the ball would survive
the drop. If the end of the stretch is
reached, the last successful floor is the
searched-for maximum.

Check Your Results!
With delicate problems like this, bugs
are almost inevitable, so you’d better
verify the results with a regression test

suite. The suite program (Listing 2) uses
the Sysadm::Install module from CPAN
to call the bball‑drop script repeatedly
with different maximum floor values be-
tween 0 and 100. The tap() function
calls the script and captures STDOUT,
STDERR, and the script’s return code. In
a typical run, the bball-drop script prints
out something like Figure 5, and the reg-
ular expression in line 14 picks up the
result with the highest floor the bowling
ball survived and the total number of
steps required to ascertain the result.

The two Test::More commands in lines
19 and 22 verify whether the result iden-
tified by the script matches the preset
test case parameter and whether the
script keeps to the maximum permitted
number of 15 attempts. The Test::More
module from CPAN provides tried and
trusted output in TAP format (1 ok for
successful cases and 2 not ok for unsuc-
cessful ones). Reading this with the
naked eye could be cumbersome, so the
prove script, which comes with the mod-
ule and with more recent Perl distribu-
tions, wraps a test harness around the
TAP output to confirm that all 202 tests
completed successfully (Figure 6). This
is much easier than manually checking
the 200+ lines output by suite for errors.
As it turns out, all tests pass with flying
colors. The candidate scores full points
and can look forward to a successful ca-
reer in IT! n

01 �#!/usr/local/bin/perl ‑w

02 �use strict;

03 �use Sysadm::Install qw(:all);

04 �use Test::More;

05

�06 �plan tests => 202;

07

�08 �for my $floor (0 .. 100) {

09

�10 � my ($stdout, $stderr, $rc) =

11 � tap "bball‑drop", $floor;

12

�13 � if ($stderr =~

14 � /floor: (\d+) \((\d+)/) {

15

�16 � my ($result, $tries) =

17 � ($1, $2);

18

�19 � is($floor, $result,

20 � "result: $result $tries");

21

�22 � ok(

23 � $tries <= 15,

24 � "result: $result $tries"

25 �);

26

�27 � } else {

28 � die "Unmatched: $stderr";

29 � }

30 �}

Listing 2: suite

Figure 5: Worst case, the algorithm needs 15 steps.

Figure 6: The test suite confirms that the script returns correct

results for any combination of floors and never takes more than 15

attempts.

[1]	� How young Johann Carl Friedrich
Gauss solved adding integers in
arithmetic progression: http://​en.​
wikipedia.​org/​wiki/​Gauss#​Early_
years_.​281777.​E2.​80.​931798.​29

[2]	� Quadratic equation: http://​en.​
wikipedia.​org/​wiki/​Quadratic_equa‑
tion

[3]	� Listings for this article: ftp://​www.​
linux‑magazin.​de/​pub/​listings/​
magazin/​2009/​12/​Perl

INFO

Perl: Aptitude TestProgramming

74 ISSUE 110 January 2010

