
The end of the credit crunch is 
nigh; time to apply for a new job! 
Once the economy gets back into 

gear, corporations will again have money 
burning holes in their pockets. And, to 
land the job of their dreams, candidates 
will have to dust off their CVs and bone 
up on questions posed at job interviews.

Bowling Ball Drop
A popular question that software compa-
nies in Silicon Valley love to ask appli-
cants for programming jobs is this: 
Given two identical bowling balls – from 
which floor of a 100-story building could 
you drop either of them without it break-
ing? The idea of this task is to minimize 

the number of drop attempts required in 
the worst case.

A naive method would be to start on 
the first floor, drop the ball, and see if it 
survives. If it does, you would repeat the 
experiment on the second floor and 
slowly work your way up to the 100th 
floor. In the worst case, that is, if the 
bowling balls were tough enough to sur-
vive a drop from the 100th floor, you 
would need 100 drops to find the result.

Recall that you have two bowling 
balls, and you’re allowed to break both 
of them, but you need to identify the 
critical floor precisely when you break 
the second one. (Hint: 15 attempts are 
all you should take – unless you want to 
fail the aptitude test and look for a job 
elsewhere.)

If you think you have what it takes to 
become a software developer in Silicon 
Valley, stop reading now, imagine the 
not totally stress-free scenario of a job 
interview, and keep your cool while you 
work through the options in your head. 
The clock’s ticking …

The Decisive Trick
As I mentioned previously, a linear ap-
proach will solve the problem, but it 
takes far too many iterations. A binary 

search would be similar: If you divide 
the 100 floors by two and drop the first 
ball from the 50th floor, you would need 
49 further drops to find the critical floor 
in a worst case scenario. After all, you’re 
not allowed to break the second ball, if 
you don’t have the answer afterwards.

The trick here is to divide the 100 
floors into stretches of gradually decreas-
ing size (Figure 1). The first stretch has a 
length of n floors, the second n – 1, the 
third n – 2, and so on, until one stretch 
includes the 100th floor. Using this divi-
sion, you would work your way through 
the stretches from left to right, dropping 
the first bowling ball from the first floor 
of the stretch you are currently working 
on. If the ball breaks, you would drop 
the second ball from the second floor in 
the previous stretch (if this exists) until 
it breaks, or you reach the end of the 
stretch. This identifies the critical floor 
before you run out of balls.

The interesting property about the di-
vision shown in Figure 2 is that it always 
limits the number of attempts to identify 
the critical floor to a maximum of n + 1, 
no matter where the ball eventually 
breaks. If the critical point is, say, the 
last floor in the first stretch, the first ball 
would break on the second drop all told, 
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Figure 2: Dividing the 100 floors into stretches of continually decreasing size.

n                                n-1                                 n-2                        n-3                    n-4                n-5                   ...

Figure 1: From which floor will the bowling 

ball survive the drop? Given 100 floors and a 

total of two balls, a maximum of 15 attempts 

will suffice.
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from the first floor of the second stretch. 
After this, the researcher would drop the 
second ball from the second to the nth 
floor of the first section. It would survive 
until the end, giving you n as the highest 
floor. The number of attempts here is 
two with the first ball, and n – 1 with the 
second, giving you a total of n + 1.

If the critical floor is the last floor in 
the fifth stretch, which has a length of n 
– 4, the first ball would break on the 
sixth attempt, from the first floor of the 
sixth stretch. Then, you only need n – 4 
– 1 attempts to try the remaining floors 
in the fifth stretch because this stretch 
has a length of n – 4 and you previously 
tried the first floor without breaking the 
ball. The maximum number of attempts 
if the last ball drops safely from the last 

floor in stretch five is 6 + n – 4 – 1 (i.e., 
n + 1).

Searching for n
The algorithm is perfectly clear and per-
forms at or better than n + 1 attempts in 
the worst case. But how do you decide 
on the value of n for a building with 100 
floors? The task is to reduce the maxi-
mum number of attempts to a minimum, 
so this means that small values for n are 
preferred. However, the size of the 
stretches start at n drops in steps of 1, 
and if a stretch has a value of 1, without 
the sum total of all stretches reaching 
100, you’ve run short.

Thus, the sum total of n + (n – 1) + 
(n – 2) + … + 1 should be precisely 
100 if possible. It can be above 100, but 
not below it. As you might be aware, the 
German mathematician Carl Friedrich 
Gauss presumably defined a formula for 
this series of numbers while he was still 
a kid. His teachers asked him to add up 

the numbers between 1 and 100, and the 
genial Gauss told them the answer 
within seconds without performing a 
single addition [1].

So, according to Gauss, n(n + 1)/​2 
>= 100. This leads to a quadratic equa-
tion, and the only positive solution for it, 
on the basis of the boilerplate math I 
was taught in school, is 13.65. Figure 3 
shows how I solved it on my white-
board. The smallest acceptable value for 
n is thus 14, and Figure 4 shows the de-
rived distribution of the floor stretches I 
was looking for.

Molded in Perl
The bball-drop program in Listing 1 
shows an implementation of the algo-
rithm in Perl [3]. Line 10 determines the 
value for n by solving the quadratic 
equation and rounds up the resulting 
floating point value to the next integer 
with the ceil() function from the POSIX 
module.

Figure 3: The condition turns into a qua-

dratic equation that can be solved via a well-

known formula [2].

Figure 4: When n = 14, the floors divide into these stretches.

01 �#!/usr/local/bin/perl ‑w

02 �use strict;

03 �use POSIX qw(ceil);

04 �use Log::Log4perl qw(:easy);

05

�06 �Log::Log4perl‑>easy_init(

07 �                      $INFO);

08 �my $total = 100;

09

�10 �my $n = ceil(

11 � ( ‑1 +

12 �   sqrt(1 + 4 * 2 * $total)

13 � ) / 2

14 �);

15

�16 �my $sum   = 1;

17 �my @stops = ();

18 �push @stops, $sum;

19

�20 �while ($sum + $n <= $total) {

21 � push @stops, $sum + $n;

22 � $sum += $n;

23 � $n‑‑;

24 �}

25

�26 �my $last_ok_floor = (

27 � defined $ARGV[0] ?

28 �  $ARGV[0] : 42 );

29

�30 �INFO "Pst, pst: Highest OK ",

31 �  floor is ", $last_ok_floor;

32

�33 �my $tries       = 0;

34 �my $ok_floor    = 1;

35 �my $smash_floor = $total + 1;

36

�37 �for my $stop (@stops) {

38

�39 � $tries++;

40 � if ( !try_floor(

41 �    $stop, $last_ok_floor)) {

42 �  $smash_floor = $stop;

43 �  last;

44 � }

45 � $ok_floor = $stop;

46 �}

47

�48 �for my $try_floor (

49 � $ok_floor + 1 ..

50 � $smash_floor ‑ 1) {

51

�52 � $tries++;

53 � if ( !try_floor(

54 �   $try_floor, $last_ok_floor

55 �  )) {

56 �  $smash_floor = $try_floor;

57 �  last;

58 � }

59 � $smash_floor =

60 �   $try_floor + 1;

61 �}

62

�63 �INFO "Highest OK floor: ",

64 �  $smash_floor ‑ 1,

65 �  " ($tries tries)";

66

�67 �#############################

68 �sub try_floor {

69 �#############################

70 � my ($floor, $last_ok_floor)

71 �   = @_;

72

�73 � if($floor > $last_ok_floor){

74 �  INFO "Floor $floor: ",

75 �       "Wham, busted!";

76 �  return 0;

77 � }

78

�79 � INFO "Floor $floor: Okay.";

80 � return 1;

81 �}

Listing 1: bball-drop
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The while loop in lines 20-24 then cre-
ates an array, @stops, whose elements 
are set to the number of the first floor in 
a particular stretch. That is, for n = 14, 
@stops contains the values 1, 15, 28, …, 
91, 96, 100. The script calls the last floor 
from which the bowling ball survives the 
drop the Highest OK floor and accepts 
this number at the command line for test 
purposes (you would call the script by 
entering bball‑drop 99 to test the sce-
nario in which the bowling balls can sur-
vive floor 99, for example, but no 
higher), or it defaults to the value of 42 
set in line 28.

Log4perl in line 30 whispers the value 
to be discovered by the algorithm (Pst, 
pst) to the caller, then the script starts to 
work through the individual test cases. 
The for loop in lines 37-46 goes to the 
start of a stretch in the @stop array and 
calls the try_floor() routine with the 
floor to test and the secret maximum 
floor as arguments. If the tested height is 

greater than the 
maximum height, 
try_floor() returns 
a false to signify 
that the bowling 
ball you dropped 

has shattered into a thousand pieces.
If the for loop in lines 37-46 finds a 

floor that the first ball does not survive, 
it terminates by calling last and sets the 
$smash_floor variable to the floor that 
caused the damage. The algorithm then 
continues, with the next for loop in lines 
48-61 taking the next floor from the 
stretch with the last successful drop and 
climbing up one floor at a time until the 
second ball bites the dust, or the end of 
the stretch is reached. If the ball breaks, 
the loop terminates with last, and the re-
sult is available in $smash_floor. Reduc-
ing this value by 1 gives you the highest 
floor from which the ball would survive 
the drop. If the end of the stretch is 
reached, the last successful floor is the 
searched-for maximum.

Check Your Results!
With delicate problems like this, bugs 
are almost inevitable, so you’d better 
verify the results with a regression test 

suite. The suite program (Listing 2) uses 
the Sysadm::Install module from CPAN 
to call the bball‑drop script repeatedly 
with different maximum floor values be-
tween 0 and 100. The tap() function 
calls the script and captures STDOUT, 
STDERR, and the script’s return code. In 
a typical run, the bball-drop script prints 
out something like Figure 5, and the reg-
ular expression in line 14 picks up the 
result with the highest floor the bowling 
ball survived and the total number of 
steps required to ascertain the result.

The two Test::More commands in lines 
19 and 22 verify whether the result iden-
tified by the script matches the preset 
test case parameter and whether the 
script keeps to the maximum permitted 
number of 15 attempts. The Test::More 
module from CPAN provides tried and 
trusted output in TAP format (1 ok for 
successful cases and 2 not ok for unsuc-
cessful ones). Reading this with the 
naked eye could be cumbersome, so the 
prove script, which comes with the mod-
ule and with more recent Perl distribu-
tions, wraps a test harness around the 
TAP output to confirm that all 202 tests 
completed successfully (Figure 6). This 
is much easier than manually checking 
the 200+ lines output by suite for errors. 
As it turns out, all tests pass with flying 
colors. The candidate scores full points 
and can look forward to a successful ca-
reer in IT!  n

01 �#!/usr/local/bin/perl ‑w

02 �use strict;

03 �use Sysadm::Install qw(:all);

04 �use Test::More;

05

�06 �plan tests => 202;

07

�08 �for my $floor (0 .. 100) {

09

�10 � my ($stdout, $stderr, $rc) =

11 �   tap "bball‑drop", $floor;

12

�13 � if ($stderr =~

14 �    /floor: (\d+) \((\d+)/) {

15

�16 �  my ($result, $tries) =

17 �    ($1, $2);

18

�19 �  is($floor, $result,

20 �   "result: $result $tries");

21

�22 �  ok(

23 �   $tries <= 15,

24 �   "result: $result $tries"

25 �  );

26

�27 � } else {

28 �  die "Unmatched: $stderr";

29 � }

30 �}

Listing 2: suite

Figure 5: Worst case, the algorithm needs 15 steps.

Figure 6: The test suite confirms that the script returns correct 

results for any combination of floors and never takes more than 15 

attempts.

[1]	� How young Johann Carl Friedrich 
Gauss solved adding integers in 
arithmetic progression: http://​en.​
wikipedia.​org/​wiki/​Gauss#​Early_
years_.​281777.​E2.​80.​931798.​29

[2]	� Quadratic equation: http://​en.​
wikipedia.​org/​wiki/​Quadratic_equa‑
tion

[3]	� Listings for this article: ftp://​www.​
linux‑magazin.​de/​pub/​listings/​
magazin/​2009/​12/​Perl
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