
If you use instant messaging at work, you might be familiar with the
problem of incoming messages interrupting your concentration.
Many of these messages could probably wait until later. On the

other hand, if your manager sends you a message, you need to respond
quickly. But how can you filter for urgent messages?

Pidgin, a messaging client [2] that supports all the popular communi-
cations protocols, such as Yahoo Messenger, AOL AIM, or IRC, offers
what are known as “Buddy Pounces,” which perform a specific action
on a specific event. To set this up, you can access the dialog box via
Tools | Buddy Pounces (see Figure 1). Among other things, you can play
a predefined sound file or run an external program upon receiving a
message (“Buddy sends a message” event) or when a specific commu-
nications partner signs on. To do so, you need to fill out the form
shown in Figure 1, giving details of the IM service you are using, your

Perl helps Pidgin, the jack of all trades among instant mes-

saging clients, assign different sounds to different commu-

nication partners and play them when a message arrives.

By Michael Schilli

Configure Pidgin to play personal sounds

Listen to the Signals

Figure 1: The “Pounce” function in Pidgin runs the ~/​bin/​

pounce-sound script when IM buddy “bigboss” triggers an

event.

Yuri Arcurs, 123RF

Perl: Pidgin EnglishProgramming

70 ISSUE 112 March 2010

own account, and the name of your IM
partner whose activity will trigger the
event. To avoid having Pidgin enable the
handler once only and then deleting
your definition, it is important to check
the Recurring box.

Slick Sound Deal
It just so happens that I went on a wild
spending spree on Amazon.com a cou-
ple of weeks ago and bought 500 sound
effects as downloadable MP3 files at the
bargain price of US$ 2.59 (note the price
has bounced back to US$ 7.99 since
then) [3]. What a great opportunity to
assign these sound effects to my favorite
IM buddies! Once I’ve hidden the Pidgin
chat window, only a uniquely identifi-
able sound for a select partner will inter-
rupt my flow of thoughts. The rest of the
world can wait.

To begin, I’ll assign a bugle call (bugle.
mp3) to the manager, a Samba rattle (ca‑
bassa.mp3) to a guy at work who is mad
about dancing, and the sound of wild
geese flying overhead (goose.mp3) to a
friend on AIM who always has the latest
gossip.

Regular readers of this column will un-
derstand that I wasn’t in the least in-

clined to type all this stuff into Pidgin’s
dialog box for each buddy and to repeat
the process for every single Pidgin in-
stance, say, on my netbook and my
home machine. Fortunately, Pidgin
stores the pounce definitions in an easily
readable XML file, ~/.purple/pounces.
xml.

Instead, the Perl pounce‑yml‑to‑xml
script expects a compactly formatted
YAML file, like that in Figure 2, and con-
verts it without much ado into the more
convoluted XML format that Pidgin fa-
vors. The YAML file, pounces.yml, is
stored in a newly created directory,
~/.pidgin‑pounces, where users can
enter a sound file for each of their online
buddies.

Runs with the Hare, Hunts
with the Hounds
Because Pidgin uses a variety of IM pro-
tocols and users are typically logged in
to multiple accounts on multiple servers
at the same time, the sound_map entry
in the YAML file is followed by a key that
lists the IM provider and the user ac-
count with the provider in a colon-sepa-
rated list. Below this level of the hierar-

chy are the online
buddy mappings to
the sound files that I
want Pidgin to play.
If you look at Figure
2, you will see that
my screen name on
the Yahoo messen-
ger service is mike‑
schilli, and if elcar‑
amba sends me a
message, Pidgin will
hammer out a hot
Latin American beat
in the form of ca‑
bassa.mp3.

Filtering for Sound Overkill
Besides the buddy-to-sound mappings in
sound_map, the YAML file also sets the
interval parameter to avoid having the
system play a sound whenever a mes-
sage arrives. If interval is set to 60, the
minimum interval between two sounds
is 60 seconds. If multiple messages ar-
rive in this period, the system will auto-
matically suppress the sound it would
normally play to avoid exposing the poor
user to sound overkill during work
hours.

YAML data can be imported as is into
Perl; the LoadFile() function exported
from the YAML module converts them
into the Perl data structure shown in Fig-
ure 3. The next step is to convert the
data into Pidgin’s bloated XML format.

From YAML to XML
The XML format used by Pidgin (Figure
4) defines a construct that is surrounded

Figure 3: Using LoadFile() to parse the

YAML data returns this data structure in

Perl.

Figure 2: From the data in this YAML file,

the script pounce-yml-to-xml generates the

XML file in Figure 5.

Figure 4: Pidgin stores configured pounces in an XML file in the

.purple folder below your home directory.

Figure 5: The XML generated by pounce-

yml-to-xml, which, for example, tells Pidgin

to call the external pounce-sound script

when a message from bigboss reaches mike-

schilli.

ProgrammingPerl: Pidgin English

71ISSUE 112March 2010

by <pounce> tags for each pounce.
This totality of tags resides inside an um-
brella tag called <pounces>, which can
be seen with a bit of reverse engineering.
Simply define multiple pounces in Pid-
gin’s GUI and then inspect the new XML
file this automatically creates (Figure 5).

The pounce‑yml‑to‑xml script converts
the compact YAML file from Figure 2
into explicit XML instructions for Pidgin
then stores them in ~/.purple/pounces.
xml for Pidgin to pick up. The for loop
beginning in line 21 iterates over the
keys in the sound_map hash in the
YAML file, which has a protocol:account-
style format. At the hierarchy level, this
is followed by another hash that maps
my buddies to sounds. The keys function
returns a list of these buddies, and line
34 calls the mk_pounce() function de-
fined in lines 62-89 for each mapping
entry. The parameters that the function
expects are the name of the buddy, the
account name (recv because this account
will receive messages from the buddies),
and the protocol to use (yahoo, aim, or

similar). The function returns an XML
string that matches a single pounce
entry in Pidgin’s pounces.xml configura-
tion file.

Finicky Pidgin
To write the file in XML format, I used
the CPAN Template module, which is a
template processor that normally helps
generate dynamic web pages. In the
pounce‑yml‑to‑xml script, it simply ex-
pands [% variable %]-style macros, and
the practical FOR construct in the Tem-
plate language helps avoid an awkward
mix of Perl and XML code in line 45.

I started off experimenting with
XML::Simple for this, but creating XML
that looks as if Pidgin created it is more
or less impossible. And Pidgin isn’t ex-
actly robust when it comes to the se-
quence of data in the XML file. If you
want to see a really nasty Pidgin crash,
just move the pouncee entry from the
start of the pounce structure to the end.
Anyway, the XML template works just
fine, and before slipping the new file to

Pidgin, the script calls the mv function
from Sysadm::Install, to push aside a
pounce.xml file that Pidgin might already
be managing, and renames it to pounces.
xml.old.

The process() method in line 56 ex-
pects an array of pounce XML strings,
which the FOR loop in the Template code
then iterates over. It inserts the parame-
terized XML in the correct places and
then overwrites Pidgin’s pounces.xml
with the new data. The results, which
you can see in Figure 5, are a lengthy
slab of XML for every combination of
protocol, account, and buddy. The exter-
nal pounce‑sound program calls all the
instances of this XML snippet with these
parameters.

Shorten Sounds
The sound files you want to map to your
online buddies must be installed in the
sounds directory below the .pidgin
pounces directory. The sounds shouldn’t
be more than a couple of seconds in
length. If you need to curtail a longer

01 �#!/usr/local/bin/perl ‑w

02 �use strict;

03 �use Sysadm::Install qw(:all);

04

�05 �use YAML qw(LoadFile);

06 �use Template;

07

�08 �my ($home) = glob "~";

09 �my $path =

10 � "$home/.pidgin‑pounce";

11 �my $yaml = LoadFile(

12 � "$path/pounce.yml");

13

�14 �my $xml_file =

15 � "$home/.purple/pounces.xml";

16 �my $SOUND_CMD =

17 � "~/bin/pounce‑sound";

18

�19 �my @pounces = ();

20

�21 �for my $account (

22 � keys

23 � %{ $yaml‑>{sound_map} }) {

24

�25 � my ($proto, $recv) =

26 � split /:/, $account;

27

�28 � for my $buddy (

29 � keys %{

30 � $yaml‑>{sound_map}

31 � ‑>{$account} }) {

32

�33 � push @pounces,

34 � mk_pounce($buddy,

35 � $recv, $proto);

36 � }

37 �}

38

�39 �binmode STDOUT, ":utf8";

40

�41 �my $xml = q{

42 �<?xml version='1.0'

43 � encoding='UTF‑8' ?>

44 �<pounces version='1.0'>

45 �[% FOR pounce IN pounces %]

46 � [% pounce %]

47 �[% END %]

48 �</pounces>

49 �};

50

�51 �my $tmpl = Template‑>new();

52

�53 �mv $xml_file, "$xml_file.old"

54 � if ‑f $xml_file;

55

�56 �$tmpl‑>process(\$xml,

57 � { pounces => \@pounces },

58 � $xml_file)

59 � or die $tmpl‑>error;

60

�61 �#############################

62 �sub mk_pounce {

63 �#############################

64 � my ($buddy, $recv, $prot)

65 � = @_;

66

�67 � return qq{

68 �<pounce ui='gtk‑gaim'>

69 � <account

70 � protocol='prpl‑$prot'

71 � >$recv</account>

72 � <pouncee>$buddy</pouncee>

73 � <options/>

74 � <events>

75 � <event type='sign‑on'/>

76 � <event

77 � type='message‑received'/>

78 � </events>

79 � <actions>

80 � <action

81 � type='execute‑command'>

82 � <param name='command'

83 � >$SOUND_CMD $prot:$recv
$buddy</param>

84 � </action>

85 � </actions>

86 � <save/>

87 �</pounce>

88 � }

89 �}

Listing 1: pounce-yml-to-xml

Perl: Pidgin EnglishProgramming

72 ISSUE 112 March 2010

sound file, just launch Audacity, trim the
sound to the required length, and apply
the fade in and fade out effects to ensure
smooth audio (see Figure 6).

The pounce‑sound script, called by
Pidgin when an event occurs, expects a
protocol and account combination,
along with the nick of the sending user,
as its command-line parameters. It reads
in the YAML file and determines whether

a special sound already exists for the
user. If so, it uses the play utility of the
handy sox package to output the sound
via the soundcard. For example, if Pidgin
receives a message from bigboss via the
Yahoo protocol and addressed to a
logged in user called mikeschilli, it calls:

pounce‑sound yahoo:mikeschilli bigboss

The script pounce‑sound then checks the
YAML file, discovers that the bugle.mp3
file is mapped for this case, and plays
the file.

The only unusual thing about
pounce‑sound is the call to module
Data::Throttler, which avoids annoying
the user by playing a sound too often.
Data::Throttler creates a YAML file in
~/.pidgin‑pounce/throttler.yml and re-
members the number and time of the
previous calls. The try_push() function
stores a key comprising the protocol, ac-
count name, and buddy name and re-
turns FALSE if the buddy was active
within the last interval seconds. It lets
other buddies through – until they over-
step their quota, of course.

Installation
The pounce‑sound script, called by Pid-

gin when an event occurs, must be saved
in the bin directory below your home di-
rectory. Then you need to run the chmod
+x command to make it executable.

The CPAN YAML, Template, and
Sysadm::Install CPAN modules are avail-
able in many distributions via their
package managers. The Data::Throttler
module file can be installed in a CPAN
shell by entering perl ‑MCPAN ‑e'install
Data::Throttler'. The play utility that the
pounce‑sound program uses to output
the MP3 file is part of the sox package,
which you can install on Ubuntu with:

sudo apt‑get install sox

Your sound files, with fade in and fade
out as appropriate, must reside in the
sounds subdirectory below ~/.pid‑
gin‑pounces. Then, you need to modify
the YAML file in Figure 2 to reflect your
interval preference, stop the Pidgin pro-
cess if it is running, and call the
pounce‑yml‑to‑xml script. If you want to
sound a warning when messages arrive,
but not when your buddies log on, you
can delete the sign‑on event from the
XML in line 75 of pounce‑​yml‑​to‑​xml.

When it’s restarted, Pidgin grabs the
automatically generated XML file and, if
asked to do so, shows you the new con-
figuration in the Pounce dialog. When a
defined event occurs, Pidgin calls the
pounce defined for it, which in turn,
sounds the bugle to interrupt your power
nap. Okay, boss, I’m almost done! n

Michael Schilli works
as a software engi-
neer with Yahoo! in
Sunnyvale, California.
He is the author of
Goto Perl 5 (German)
and Perl Power (Eng-
lish), both published by Addison-Wes-
ley, and he can be contacted at
mschilli@perlmeister.com. Michael’s
homepage is at http://​perlmeister.​
com.

T
H

E
 A

U
T

H
O

R

[1]	� Listings for this article: ftp://​www.​
linux‑magazin.​de/​pub/​listings/​
magazin/​2010/​02/​Perl

[2]	� Pidgin: http://​www.​pidgin.​im

[3]	� “500+ Sound Effects” in MP3 for-
mat: http://​www.​amazon.​com/​gp/​
product/​B002OVD5FK

INFO

Figure 6: The Audacity tool trims the sound

to the right size and allows it to gently fade

out by applying the Fade In/​Out effects.

01 �#!/usr/local/bin/perl ‑w

02 �use strict;

03 �use YAML qw(LoadFile);

04 �use Data::Throttler;

05

�06 �my ($proto, $buddy) =

07 � @ARGV;

08

�09 �die

10 � "usage: $0 proto:recv buddy"

11 � if !defined $buddy;

12

�13 �my ($home) = glob "~";

14 �my $path =

15 � "$home/.pidgin‑pounce";

16

�17 �my $yaml = LoadFile(

18 � "$path/pounce.yml");

19

�20 �my $throttler =

21 � Data::Throttler‑>new(

22 � max_items => 1,

23 � interval =>

24 � $yaml‑>{interval},

25 � backend => "YAML",

26 � backend_options => {

27 � db_file =>

28 � "$path/throttle.yml",

29 � },

30 �);

31

�32 �if (!$throttler‑>try_push(

33 � key => "$proto:$buddy"

34 �)) {

35 � # rate limit reached, skip it

36 � exit 0;

37 �}

38

�39 �if (exists

40 � $yaml‑>{sound_map}‑>

41 � {$proto}‑>{$buddy}) {

42 � my $sound =

43 � $yaml‑>{sound_map}

44 � ‑>{$proto}‑>{$buddy};

45 � system(

46 � "play $path/sounds/$sound"

47 �);

48 �}

Listing 2: pounce-sound

ProgrammingPerl: Pidgin English

73ISSUE 112March 2010

