PROGRAMMING

Perl: Perl Completion

Bash guesses what users want to type, thanks to Perl

A MORE COMPLETE
COMPLETER

The shell’s completion mechanism finishes

whatever you start typing when you

press the Tab key. A Perl script
customizes this function.
BY MICHAEL
SCHILLI

he
Tab
key is

fairly worn on
many people’s key-
boards. The heavy use it
gets is due to the Bash shell’s
ability to intelligently complete
command, directory, and filenames
that you start typing at the command
line.

Standard Repertoire

Figure 1 shows Bash’s standard comple-
tion repertoire. If you type Ism at the
keyboard, as in line 1 and press the Tab
key, Bash will immediately expand this
to Ismod, the command for querying in-
stalled kernel modules. Why? Bash
knows that the three letters at the start
of a command line must begin an exe-
cutable command. Bash couldn’t find
any other command with these three let-
ters in the $PATH, so it simply made the
right choice.

If you look at the second command
line in Figure 1, you will see that the
user typed just two letters, Is, before
pressing Tab. Again, this has to be a
command, rather than a normal file, but
the details are ambiguous. Dozens of
commands start with s in the path. In

2 |ssu5%

this

case, Bash
just sits and
waits until the user presses
Tab again before responding

with a compact list of the possible re-
sults. Then it waits for the user to enter
some more letters and reduce the num-
ber of candidates.

1731 Matches

If you press Tab while typing the second
word in a line, or later - as shown in the
fourth command line in Figure 1, the
completion mechanism will assume that
you want to specify a filename for the Is
command. Unfortunately, options are so
numerous that Bash says nothing when
you press Tab once, except to ask you if
you really want to see all 1731 options
(line 5 of the output) should you be so
bold as to press Tab again.

MAY 2010

S S

JI€2] ‘lwebewje

If you

enter more
letters, as in
lines 6 and 7, and

thus reduce the num-

ber of options, pressing
Tab twice will give you a
meaningful list of completions.
Bash will not actually complete

the line until it has an unambiguous
answer.

Partial completion also happens. If a
user types /etc/up, as in line 8, and then
presses Tab once, the shell immediately
completes as far as /etc/update-, al-
though two options - update-manager
and update-notifier - could fullfil the re-
quest. Such partial completion helpfully
gives you the path up to the point that
your entry becomes ambiguous.

The complete command documented
in “Programmable Completion” on the
Bash man page (man bash) lets shell
users willing to invest some effort in pro-
gramming enhance the standard reper-
toire. The Bash Completion project [1]
offers a huge collection of completion
rules that you can add to your local .
bashrec file.

This brain implant for Bash adds com-
mand-specific rules and completion for
command options. For example, if you
enter git com and press the Tab key, the
mechanism will expand this to git com-

SE10 lsml PR
3 Noemad

SE20 Lal TAl]
F030 LslTARILTAR]

[z Isb_relcme lshal lamcd Dapci

lupgaat
Imutir ladafd

lohi lsaf lspcecis Leuss
$04p 15 [TRED

$050 In [TIEILTAR]
Bisplay sll 170 pessibilities? (y or nd

06D I3 Felcidpal TNE]

3050 I Fobcspal VRS L TR)
pamoenk poged papeFalze rag

$ERN ln Fakoiupl TAE]
2 Na debofepdsta— | PRRILITAR]
ers ugdate-notilLers

Figure 1: Bash normally completes com-
mands and names of files to be processed
when the user presses the Tab key.

mit, because this is the only subcom-
mand starting with com for the version
control tool. For more details on the
complete function, check out the mate-
rial in some books on Bash [2] [3].

Although the collection of scripts in
the Bash Completion project builds on
Bash functions, experienced Perl pro-
grammers will be aware that shell scripts
- although quickly programmed - often
turn out to be dead ends, mainly be-
cause the Shell language is rather limited
and doesn’t provide powerful mecha-
nisms for abstraction. Programmers are
better off implementing some shell
scripts in a more complete scripting lan-
guage like Perl, because sooner or later
they are going to rewrite the whole en-
chilada when things go beyond the pro-
totype stage.

Do It Yourself

For incomplete command-line entries,
you can just as easily generate the sug-
gestions that Bash returns with a Perl
script. For example, if you have a

complete -C helper command

directive in your .bashrc where the shell
can parse it on launching, the shell will
always rely on the helper program for
suggestions concerning the command.
When a user types command (fol-
lowed by a blank) and presses the Tab
key, Bash will call the Perl helper script
and pass the COMP_LINE and COMP_
POINT environment variables to it. This
gives the helper script the command line
up to that point and the cursor position
when the user pressed the Tab key. Addi-
tionally, the arguments the helper re-

ceives (from @ARGYV in Perl) are the
first word in the line (typically the com-
mand), the word to be completed, and,
as a third argument, the previous word.
The shell expects the helper to output a
number of suggestions separated by line
breaks to stdout.

The shell session in Figure 2 defines
the complete-dump script as a helper for
the Is command. As you can see from
Listing 1, this experimental helper script
only returns the content of the COMP_
LINE and COMP_POINT environment
variables and the @ARGYV array as the
stderr output. It doesn’t return anything
on stdout, and the completion mecha-
nism thus makes no suggestions.

The output shows that Bash passes the
command line, including all blanks, to
the helper script in the COMP_LINE vari-
able. It returns the cursor position in
COMP_POINT along with the COMP_
LINE because the user could press the
cursor keys to edit the command line
and then suddenly press Tab in the mid-
dle of a command, although this is prob-
ably of little practical use. Under normal
circumstances, COMP_POINT will be ex-
actly the length of the string in COMP_
LINE.

Line 3 attempts to complete the first
argument for the is command and re-
ceives Is (the first word), /etc/p (the
word to complete) and Is again (the pre-
vious word) as arguments in @ARGV. In
the fourth case, in which it wants to
complete the second argument for Is, a

Listing 1: complete-dump

01 #!/usr/local/bin/perl -w

02 use strict;

03 use Data::Dump qw(dump);

o4

05 my %matches = ();

06

07 for my $env_var (keys %ENV) {

08 next if
09 $env_var !~ /~COMP_/;
10

11 $matches{$env_var} =

12 $ENV{$env_var};

15 $matches{ARGV} = \@ARGV;

17 print STDERR "\n",

18 dump(\%matches);

MAY 2010

Perl: Perl Completion PROGRAMMING

§010 camplete 0 gospletedump 1=
1030 1= [TAE]
{ ARV = [F1s°, 5% “le®l,
COHFE_LIRE = “la ~.
[DWF_PITMT => F. F

LA 1= Ffedsdpl IER

{ AREY = [Tls™. “dfercdp™. T1a7l
[OWFP_LINE =¥ "la fuicip™.
[OHE_POTHT =3 9, &

Bi40 15 fend Aecr BITRED

Ia fmtc fumrdb
AV =¥ ["le”, "dfumrdb®, "deic”],
(0WE_LIRE => “ls felc fusrsss,
[OHF_FTHE =% 4. }

Figure 2: The shell complete command uses
the -C option to assign the complete-dump
script to the Is command, which the shell
then calls as a completion helper.

third helper argument is returned: /etc -
again this is the word before the word to
be completed.

Built-In Helper

Even self-programmed scripts can serve
as helper functions. The following com-
mand

complete -C myscript myscript

tells Bash to ask myscript itself for help if
a user presses the Tab key after typing
myscript followed by a blank. The script
myscript then checks whether COMP_
LINE is set and, if so, returns some sug-
gestions; otherwise, it executes nor-
mally.

Of course, this is a balancing act. A
programming error in the script could
trigger a destructive function even
though the user hasn’t even entered a
command and is just waiting for a sug-
gestion. The CPAN Getopt::Complete
module, which gives scripts an elegant
approach to completing their own op-
tions, thus suggests a conservative solu-
tion of only allowing the script to enter
Perl’s compile phase in helper mode
with perl -c myscript 2 > /dev/null rather

Listing 2: getopt-complete

1 #!/usr/local/bin/perl -w
2 use strict;

3

4 use Getopt::Complete(

5 'bgcolor' => [

6 'red', 'blue', 'green'
7 1,

8)3

|ssu5% 3

than actually running the script [4] for
completion. Listing 2 provides a short
example that uses this neat module. The
script offers the --bgcolor option for set-
ting the background color and accepts
three color values. If the user calls com-
plete -C getopt-complete getopt-complete,
the shell will complete not only the color
values but also the option names:

$ getopt-complete [TAB]

-> getopt-complete --bgcolor=

$ getopt-complete --bgcolor=r[TAB]
-> getopt-complete --bgcolor=red

Compiled programs that you can’t re-
write to add completion functions need

an external helper. For example, Listing
3 shows an example in which a user,
who obviously wants to run git clone to
clone a Git repository, is given a list of
all his repositories on github.com as a
suggestion.

Tried and Trusted

Unfortunately, if the helper doesn’t find
anything useful, the shell’s default com-
pletion file matching mechanism also
fails. This eventuality is ugly - imagine a
user typing git add and waiting for the
shell to suggest files as potential candi-
dates. It won’t get any, because
github-helper (Listing 3) doesn’t have
any suggestions for this case. The -0 de-

PROGRAMMING Perl: Perl Completion

fault option for the complete command
resolves this problem by reverting to the
shell’s own completion mechanism if the
helper has nothing to offer. Thus, adding
the line

complete -C github-helper 2
-0 default git

to your .bashrc solves this problem. If
you also want Bash to take any comple-
tions defined in the Getopt::Complete
module [4] into consideration, you can
add -o bashdefault. If the user calls a
program by its full pathname (i.e., /usr/
bin/git instead of just git), the shell first
looks for a completion entry for the full

Listing 3: github-helper

001 #!/usr/local/bin/perl -w

002 i

003 # github-helper -
oo4 # Complete github repos
005 # Mike Schilli, 2010

006 # (m@perlmeister.com)

007 ##HHHHH#HH#H

FHHFHH A

008 use strict;

009 use Pod: :Usage;

010 use LWP::UserAgent;

011 use XML::Simple;

012

013 my $netloc =

0l 'git@github.com';

015 my $user = 'mschilli';

0le

017 if (!defined $ENV{COMP_LINE})
018 {

019 podausage(

020 "COMP_LINE missing");

021 }

022

023 my ($git, $clone, $args) =
o2u split /\s+/,

025 $ENV{COMP_LINE}, 3;
026

027 $args = ""

028 unless defined $args;

029

030 if (!defined $clone

031 or $clone ne "clone") {
032

033 # Only 'clone' suggestions
034 exit(0);

035 }

036

037 if ($ARGV[2] ne "clone") {

a4 ISSUE%

038

039 # Do nothing unless clone
040 exit 0;

oul }

o42

043 # Two pseudo choices

oud if (!length $args) {

045 for (1 .. 2) {

046 print "$netloc/$user/$_\n";
ou7 }

048 exit 0;

o49 }

050

051 for my $repo (

052 remote_repos($user))
053 {

054 my $remote =

055 "$netloc/$user/$repo";
056

057 if ($args eq substr(
058 $remote, O,

059 length $args

060)) {

061 print "$remote\n";

062 }

063 }

os4

085 ittt bt

066 sub remote_repos {

067 #Ht#HH
068 my ($user) = @_;

069

070 my @repos = ();

071

072 my $ua =

073 LWP: :UserAgent->new();

MAY 2010

o74
075 my $resp =
076 $ua->get(

077 "http://github.com/api/".
078 "v1l/xml/$user"

079)

080

081 if ($resp->is_error) {

082 die "API fetch failed: ",
083 $resp->message();

osu }

085

086 my $xml =

087 XMLin(

088 $resp->decoded_content());
089

090 for my $repo (

091 keys %{

092 $xml->{repositories}
093 ->{repository} })
094 {

095 push @repos, $repo;
096 }

097

098 return @repos;

099 }

100

101 __END___

102

103 =headl NAME

104

105 github-helper - Complete github
repos

106
107 =headl SYNOPSIS
108

109 COMP_LINE=... github-helper

Getopt::
Complete

meant by
"defined
in [4]"??

Mike: “Complete” OK with cap (in the “If the

git subcommand” paragraph)?? -ris

path and, if it doesn’t find one, reverts to
the program name (i.e., git). The entry
generated above will thus work in both
cases.

If a user calls the github-helper with-
out having the COMP_LINE environment
variable set, the script quits by calling
the CPAN Pod::Usage module’s pod2us-
age() function to output the POD docu-
mentation. Otherwise, line 24 breaks
down the command-line string entry
into a maximum of three parts separated
by blanks.

If the git subcommand happens to be,
say, add rather than clone, the script will
quit in line 34 without any output and
tell the Complete mechanism that it
can’t help. Instead, the Complete mecha-
nism will then use completion functions
defined elsewhere. Line 37 checks to see
whether the user entry really is posi-
tioned after the word clone (with a
blank) or whether the cursor is still posi-
tioned directly behind clone (without a
blank).

To hurry the shell into immediately
writing git@github.com/mschilli without
contacting the Github server when the
user presses Tab after git clone (followed
by a blank), the script relies on a trick in
line 45: It outputs two pseudo-reposito-
ries:

git@github.com/mschilli/1
git@github.com/mschilli/2

and the shell immediately performs par-
tial completion up to the largest com-
mon denominator, as you can see in line
2 of Figure 3. If two further tabs occur,
the user must be interested in the remote
repositories on the server, and line 52
calls remote_repos().

Querying the Github Web
API

To find the repositories belonging to a
specific Github user, the script issues a
request to the Github server’s web API
[5] in the remote_repos() function (lines
66-99). You can do this without logging
in and using a very intuitive interface
that returns data formatted in either
XML or JSON.

The CPAN XML::Simple module and
the XMLin() function it exports help
github-helper accept the XML string that
the web API call returns and convert it
into a Perl data structure. The hash entry

Perl: Perl Completion

PROGRAMMING

repositories §- > {repository}
in this structure comprises
keys containing the user’s re-
pository names. Perl’s keys()
function returns them as a list,
and the for loop in lines 90-96
bundles them into the @repos
array, which the function fi-
nally returns to the calling pro- a e
gram.

The third command in Fig-
ure 3 shows how pressing the

ELN it ol 18]

(A pit elane [TAE]
=» gl clare glifgiihsh ,comtechillls

2 Ein clare FlURglChalb coadaschi L11ALTREIETRED
Eitge thash o
tRg itk . cavtmm o 1L fhot —soot ol T
ERg E sk, 0 oot ol L Pt ot ot 4 Ler -par L
CEE Ul o2 oot L 1L L ibea— Biored i e —gea |
Eip i thash . c omoteeacha 114/
Elp B thashs . confmm ol 111/ L b rl
mimqammuiﬂmﬁar

tipg i thesh . c covmos b 114 Fyem] - Loggdc - parl

504 gil cllares giaWglthed oo teschl LS Rol BRI
-F git clene gitBglikib.cesfeschilliflegiperl

F |II-|.I.-,F-J

la-chert

Tab key twice after the clone
command gives you a choice
of all available repository
paths. If the user then types two more
letters, as shown in the final line, thus
making the selection unique, the shell
will complete the results when you press
Tab again, and you only need to press
Enter to start the cloning process.

The if statement in lines 57-62 of List-
ing 3 checks each repository it finds to
see whether it matches the user input up
to the number of characters typed in so
far. If so, the print() command in line 61
will output the full repository string, fol-
lowed by a newline character, to the
script’s standard output, from where the
completion mechanism then gobbles it
up.

Fortunately, repository names don’t
contain any non-standard characters that
could irritate the shell. Otherwise, you
would need to escape all the results to
protect them from being expanded by
the shell. For example, if the hit con-
tained a blank or a dollar sign, you
would want the helper script to return
\ or \$ to prevent the shell from inter-
preting the results and confusing the
completion mechanism.

names.

Installation

Lines 14 and 15 in Listing 3 must be
modified to match your needs, and you
need to replace the user mschilli with
the user nick that the script will be using
to query Github.com. Of course, nothing
stops you from cloning my repositories;
that’s what Github is here for, after all.
To make sure the shell finds it, the script
must be executable and installed in a di-
rectory somewhere in your $PATH.

After doing this, you need to add the
complete command line shown previ-
ously to your .bashrc file, which you can
force the current shell to reparse by en-
tering source .bashrc, and which will au-

MAY 2010

Figure 3: The helper script completing Git repository

tomatically be used by any new Bash
shell you call.

As always, you can install the CPAN
modules XML::Simple, LWP::UserAgent,
and Pod::Usage that the script needs
quickly and easily in a CPAN shell or
with your distribution-specific package
manager.

Users who are too impatient to wait
for the network lookup to complete (it
takes somewhere between one and two
seconds), can additionally define a
cache to store the results. Note that the
shell calls a new instance of the
github-helper script every time - the
script thus needs to store its data persis-
tently on disk.

The scripts given in this article [6] are
designed only as simple examples of
what you can achieve with Bash comple-
tion; the possibilities are endless, and
Unix programmers are well known for
wanting to save typing wherever they
can. I'll leave it up to your imagination
to save time with Bash completion! M

[1] Bash Completion homepage: http./
bash-completion.alioth.debian.org

[2] Vossen, JP, and Cameron Newham,
Bash Cookbook. O'Reilly, 2007.

[3] Kiddle, Oliver, Jerry Peek, and Peter
Stephenson, From Bash to Z Shell:
Conquering the Command Line.
Apress, 2004.

[4] CPAN Getopt::Complete module:
http://search.cpan.org/dist/
Getopt-Complete/

[5] Github API: http:/github.com/
guides/the-github-api

[6] Listings for this article: ftp:/ftp.
linux-magazin.com/pub/listings/
magazine/114/Perl/

|ssu5% 5

