
While riding the bus to work, I
enjoy watching recorded TV
shows on my netbook. How-

ever, quite often, I have to interrupt an
interesting program because the bus ar-
rives at its destination. If the next stage
of the trip is only a quarter of an hour,
it’s probably not worth trying to watch
the next scene. Instead, I might decide to
watch a brief news show, rather than
getting immersed in a complicated plot
again. This leaves me with a number of
half-watched shows, and I require a tool
that lets me carry on watching from the
point at which I left off.

Chaos Prevention
What I need is a controlling GUI for the
video player that remembers the time-
stamp of the last interruption for a
whole list of TV programs: a time ma-
chine for video files that does things ex-
actly the way my trusty Tivo [1] does at
home. The digital video recorder (DVR)
records a number of TV shows and re-
members the timestamp of the last inter-
ruption. If you then open a show or
movie in the list some time later, the re-

corder starts to play exactly where you
left off. iTunes or podcast programs work
in a similar fashion. So, how difficult
could it be to write a program in Perl
that does this, too? Listing 1 (ttv) shows
the results in fewer than 150 lines, and
Figure 1 presents the GUI in action.

It would be downright absurd to rein-
vent a miracle of video technology like
MPlayer. Fortunately, this versatile piece
of software has everything it takes to cre-
ate a movie time machine. As you can
see in Figure 2, MPlayer counts the num-
ber of seconds the movie has been play-
ing; therefore, it is a fairly easy task for a
control program to find out how far
along the player is in a movie. In fact,
users can even press the Page up and
Page down keys while viewing to skip
backward and forward in the video, as
MPlayer adapts the output accordingly.

A second prerequisite for a GUI like ttv
is MPlayer’s ‑ss n option, which tells the
player to skip n seconds into the video
instead of playing it from the beginning.

The workings of the ttv Perl script
should be fairly clear. The Gtk2-based
user interface waits for the user to dou-

ble-click a video from the displayed list.
If this is the first time the user has
picked this particular show, the GUI
launches MPlayer and lets it start play-
ing from the beginning. While the player
is working, and the user is enjoying the
movie, the script accesses MPlayer’s
standard output to grab the number of
elapsed seconds and caches the number.

If the user interrupts the playback
(e.g., by pressing Q in the MPlayer win-
dow), the GUI pops back up, and the
script stores the elapsed playback time
under the video file’s name in a YAML
file called ~/.ttv.dat below the user’s
home directory (Figure 3).

Foreign Territory
Regular readers of this column can prob-
ably guess that controlling a GUI compo-
nent in combination with an external
program like MPlayer, and without af-
fecting the viewing experience, will once
again involve the event-based POE Perl
framework from CPAN. Just as with
Curses-based terminal control, presented
here in a previous issue [2], POE keeps
pace with all kinds of GUI event loops
and is the perfect choice for controlling
quasi-parallel processes. In this case, the
GUI script launches the video player as a
separate process behind the scenes, but
POE grabs its output data in a robust and
elegant single-process/​single-thread ap-

A Perl script with a Gtk2 interface remembers how far videos have been

viewed and, if needed, continues playing where the last interruption

occurred. By Michael Schilli

A Perl script controls video playback

Serial Player

C
o
clitu

 C
ristia

n
, 12

3
R

F

@R:Programming

Perl: Unfinished VideoCover story

2 ISSUE 115 June 2010

proach. When data are available, it trig-
gers a callback handler and checks that
the player is running or the user has quit
the program.

Because line 3 of Listing 1 requests the
Gtk2 module before the POE modules,
POE knows that, rather than its own
event loop, Gtk2 will be controlling the
process using the CPAN POE::Loop::Glib
module as an invisible bridge. Line 12
defines the path to the YAML file, in
which the script will later store the hash
content of the $OFFSETS reference. The
data structure adds a floating point num-
ber to the video file name, thus specify-
ing the number of seconds of playback
elapsed per video.

The global $REWIND variable tells the
script to rewind 10 seconds before jump-
ing into the middle of a video that was
interrupted earlier, so the viewer has a
chance to get back into the plot. Line 18
searches the current directory for MP4
and AVI video files. If you use different
formats, you might need to modify this.

State Machine and States
In typical POE style, the session con-
structor in lines 26-34 defines a total of
five different states between which the
state machine defined by the script
switches. After launching the POE kernel
in line 36, the GUI accepts and processes
user input until the user finally quits the
program by clicking the close button in
the main window.

The _start state in line 28 defines the
initial state. The ui_start() function as-
signed to it creates the graphical inter-
face and is defined starting in line 72.

As explained in previous columns [2]
on the subject of POE, the KERNEL, SES‑
SION, and HEAP macros pick up state
machine variables passed as function ar-
guments from Perl’s @_ array. HEAP is a
hash for a state machine session and is
used to store a plethora of global vari-
ables that the state machine passes to
each callback, while keeping them apart
from any other sessions that might be
happening at the same time.

Save or Fold?
Line 80 calls the constructor for the
main GUI window, Gtk2::Window; its
frame will later include a listbox with
videos available for play. The toplevel
parameter defines this as the applica-
tion’s main window. The script stores a
reference to it on the heap – not to ac-

cess it in callbacks later but to ensure
that Perl stores a reference to the main
window in a variable that will not disap-
pear in a puff of smoke when the ui_
start() function terminates. If this were
to happen, the application window
would just collapse, even though I want
the application to go on running.

A call to the signal_ui_destroy()
method in line 83 tells the POE kernel to
terminate all active sessions when the
main window collapses (e.g., because
the user has clicked the Close button).
The Gtk2::SimpleList widget created in
line 87 accepts the data for the two-col-
umn display.

As shown in Figure 1, each row of the
video list comprises a timestamp on the
left and the name of the matching video
file on the right. Both columns are text
data types; that is, they only contain
simple strings without color highlighting
or any other fancy styles.

The script also stores a reference to
the widget as slist on the session heap,
to make sure it isn’t cleaned up prema-
turely. The add() method places the list-
box into the main window, and the sub-
sequent call to show_all() then draws
the complete GUI on screen.

Black Magic Widget
The list_box_redraw() function defined
in lines 109-116 refreshes the listbox by
passing in new values in the form of an
array containing arrays with two ele-
ments each: timestamps and video
names. The refresh happens just by as-
signing the updated data structure to the
{data} entry of the listbox object. Black
magic within the widget (the entry is
bound by tie) immediately triggers a re-
draw of the graphical display. The
timer() function in lines 119-133 con-
verts the timestamp for a video file,
which is basically a number of seconds,
into the hh:mm:ss format.

Figure 1: At the click of a mouse, the Gtk2 interface launches selected videos from the point

at which they were interrupted – or plays them right from the start if you have not viewed

them previously.

Figure 2: When running, MPlayer sends the number of elapsed seconds to standard output,

where the ttv script picks up the data.

Cover storyPerl: Unfinished Video

3ISSUE 115June 2010

If the user double-clicks a row in the
listbox, a call to signal_connect in line 96
tells the POE state machine to enter the
click state and call the click() function
(lines 52-69). The only argument passed
in with ARG1 is a reference to the listbox
state data from which the get_row_data_
from_path() method extracts the row the
user clicked. The second element in the
array reference returned is the file name
of the selected video. A call to yield() in
line 65 tells the POE kernel to jump to
the play_video machine state by passing
in the file name for the video to play.

This launches the play_video() func-
tion (lines 136-180), which tries to dis-

cover whether the global $OFFSETS vari-
able has a value in seconds for the video
before then using the POE::​Wheel::​Run
module to launch the external player.
This wheel from the POE kernel gearbox
expects the external program and its ar-
guments in Program and ProgramArgs,
respectively. The ‑fs option launches
MPlayer in full-screen mode for en-
hanced viewing, and ‑ss supplies the
number of seconds to fast forward.

In Search of Lost Time
Because MPlayer does not use newlines
while counting seconds of played video
material on its standard output, the nor-

mal line-based filter in POE::Wheel::Run
won’t capture it. Therefore, line 166
pulls in POE::Filter::Stream, which does
not wait for a line to complete but tells
the wheel to jump to the output state
whenever a new snippet of text appears.

The stdout_handler() in lines 183-196
is called to handle the output state on
any text printed by MPlayer. It always re-
ceives a snippet of the latest MPlayer di-
agnostic output in ARG0 and uses the
regular expression in line 190 to extract
the number of video seconds played
from it (highlighted in red in Figure 2).

For this, it looks for the V: string, ei-
ther at the start of a line or after a blank,

001 �#!/usr/local/bin/perl ‑w

002 �use strict;

003 �use Gtk2 '‑init';

004 �use Gtk2::SimpleList;

005 �use POE;

006 �use POE::Wheel::Run;

007 �use POE::Filter::Stream;

008 �use YAML

009 � qw(LoadFile DumpFile);

010

�011 �my ($home) = glob "~";

012 �my $YAML_FILE =

013 � "$home/.ttv.dat";

014 �my $OFFSETS = {};

015 �my $REWIND = 10;

016

�017 �my @VIDEOS =

018 � sort { ‑M $a <=> ‑M $b }

019 � (<*.mp4>, <*.avi>);

020

�021 �if (‑f $YAML_FILE) {

022 � $OFFSETS =

023 � LoadFile($YAML_FILE);

024 �}

025

�026 �POE::Session‑>create(

027 � inline_states => {

028 � _start => \&ui_start,

029 � play_video => \&play_video,

030 � click => \&click,

031 � output => \&stdout_handler,

032 � play_ended => \&play_ended,

033 � }

034 �);

035

�036 �$poe_kernel‑>run();

037 �exit 0;

038

�039 �#############################

040 �sub play_ended {

041 �#############################

042 � my ($kernel, $heap) =

043 � @_[KERNEL, HEAP];

044

�045 � DumpFile($YAML_FILE,

046 � $OFFSETS);

047 � listbox_redraw(

048 � $heap‑>{slist});

049 �}

050

�051 �#############################

052 �sub click {

053 �#############################

054 � my ($kernel, $session,

055 � $gtk_list_data)

056 � = @_[KERNEL,

057 � SESSION, ARG1];

058

�059 � my ($sl, $path) =

060 � @$gtk_list_data;

061 � my $row_ref = $sl

062 � ‑>get_row_data_from_path(

063 � $path);

064

�065 � $kernel‑>yield(

066 � "play_video",

067 � $row_ref‑>[1]

068 �);

069 �}

070

�071 �#############################

072 �sub ui_start {

073 �#############################

074 � my ($kernel, $session,

075 � $heap) =

076 � @_[KERNEL, SESSION,

077 � HEAP];

078

�079 � $heap‑>{main_window} =

080 � Gtk2::Window‑>new(

081 � 'toplevel');

082

�083 � $kernel‑>signal_ui_destroy(

084 � $heap‑>{main_window});

085

�086 � $heap‑>{slist} =

087 � Gtk2::SimpleList‑>new(

088 � 'Timer' => 'text',

089 � 'Video' => 'text',

090 �);

091

�092 � listbox_redraw(

093 � $heap‑>{slist});

094

�095 � $heap‑>{slist}

096 � ‑>signal_connect(

097 � row_activated =>

098 � $session‑>callback(

099 � "click")

100 �);

101

�102 � $heap‑>{main_window}

103 � ‑>add($heap‑>{slist});

104 � $heap‑>{main_window}

105 � ‑>show_all;

106 �}

107

�108 �#############################

109 �sub listbox_redraw {

110 �#############################

111 � my ($slist) = @_;

112

�113 � @{ $slist‑>{data} } =

114 � (map { [timer($_), $_] }

115 � @VIDEOS);

116 �}

117

�118 �#############################

119 �sub timer {

120 �#############################

121 � my ($video) = @_;

122

�123 � my $sec = 0;

Listing 1: ttv - Part 1

Perl: Unfinished VideoCover story

4 ISSUE 115 June 2010

and then encloses the floating point
number that follows it – [\d.]+) – with
a capturing parenthesis. If the expression
matches, it grabs the value and dumps it
into the $1 variable, which stores the
match for the first capture in the regular
expression. The other set of parentheses
at the beginning of the regular expres-
sion does not have a capture function, as
the non-capturing notation ?: indicates.

If the regex finds a usable value, std‑
out_handler() stores it under the video
name in a global hash that the $OFFSETS
reference points to. The script stores this
data after playback is interrupted by the
user permanently in the YAML file below
the user’s home directory. This happens
in the play_ended() function in lines 40-
49, which the state machine triggers
after the wheel detects that the external

MPlayer program is no longer running.
The sig_child() kernel method call in
line 174 makes sure that the POE kernel
takes care of dead, externally launched
processes and prevents them from hang-
ing around forever as zombies.

Patch for POE::Loop::Glib
The CPAN POE::​Loop::​Glib module Ver-
sion 0.037 had a serious bug when I fin-

ished writing this article
that caused the GUI to
crash after running the
video for a couple of sec-
onds.

If Version 0.038 is avail-
able from CPAN when
this article goes to press,
the module author must
have applied my patch,

fixing the bug. If this is not the case, you
can download the patch along with the
other listings from the Linux Magazine
server [3].

The following short sequence of com-
mands quickly updates the module dis-
tribution after downloading its tarball
from search.cpan.org:

$ tar zxfv POE‑Loop‑Glib‑0.037.tgz

$ cd POE‑Loop‑Glib‑0.037

$ patch ‑p1 <U

 ../poe‑loop‑glib‑0.037.patch

patching file Changes

patching file Makefile.PL

patching file lib/POE/Loop/Glib.pm

The normal procedure of perl Makefile.
PL; make; sudo make install installs the
patched module in your Perl directory
tree.

To install the other modules, use either
a CPAN shell or your Linux distribution’s
package manager. This assumes that
your package manager has packages for
the Perl modules required. Also, you
need to ensure that the CPAN
POE::Loop::Glib module is installed as
an invisible bridge. Although it is not ex-
plicitly quoted in the program listing,
you will need it.

It just remains to be said that you
should avoid exploiting the script’s func-
tional scope. I wouldn’t advise running
more than three different movies at the
same time because you might confuse
plots, especially if Matt Damon and
Leonardo DiCaprio are starring in very
similar features. n

[1]	� Tivo, the digital video recorder:
http://​tivo.​com

[2]	� “Perl Flip It” by Michael Schilli,
Linux Magazine, April 2010, pg. 68

[3]	� Listings for this article:
http://​www.​linux‑magazine.​com/​
Resources/​Article‑Code

INFO

124 � $sec = $OFFSETS‑>{$video}

125 � if

126 � exists $OFFSETS‑>{$video};

127

�128 � return

129 � sprintf("%02d:%02d:%02d",

130 � int($sec / (60 * 60)),

131 � ($sec / 60) % 60,

132 � $sec % 60);

133 �}

134

�135 �#############################

136 �sub play_video {

137 �#############################

138 � my (

139 � $kernel, $session,

140 � $heap, $video

141 �)

142 � = @_[

143 � KERNEL, SESSION,

144 � HEAP, ARG0

145 �];

146

�147 � my $offset = 0;

148

�149 � $offset =

150 � $OFFSETS‑>{$video} ‑

151 � $REWIND

152 � if

153 � exists $OFFSETS‑>{$video}

154 � and $OFFSETS‑>{$video} >

155 � $REWIND;

156

�157 � my $wheel =

158 � POE::Wheel::Run‑>new(

159 � Program =>

160 � "/usr/bin/mplayer",

161 � ProgramArgs => [

162 � "‑fs", "‑ss",

163 � $offset, $video

164 �],

165 � StdoutFilter =>

166 � POE::Filter::Stream‑>new(

167 �),

168 � StdoutEvent => 'output',

169 � CloseEvent => 'play_ended',

170 �);

171

�172 � $heap‑>{video} = $video;

173

�174 � $kernel‑>sig_child(

175 � $wheel‑>PID(),

176 � 'sig_child'

177 �);

178

�179 � $heap‑>{player} = $wheel;

180 �}

181

�182 �#############################

183 �sub stdout_handler {

184 �#############################

185

�186 � my ($heap, $input) =

187 � @_[HEAP, ARG0];

188

�189 � if ($input =~

190 � /(?:^|)V:\s*([\d.]+)/m)

191 � {

192 � $OFFSETS ‑>{

193 � $heap‑>{video} } = $1;

194 � }

195

�196 �}

Listing 1: ttv - Part 2

Figure 3: The script uses a YAML file (~/​.ttv.dat) to store the

elapsed viewing time for a video. Videos not stored here are

played right from the beginning when the user selects them.

Cover storyPerl: Unfinished Video

5ISSUE 115June 2010

