
D
o-it-yourself Linuxers trying out
new USB devices have had to do
some heavy lifting in the past.
Serious tinkerers had to track

down or even write their own drivers
and embed them in the kernel code. The
newest distributions make it a bit easier
and more automatic. A TEMPer USB
thermometer [1] recently purchased for
$7 (shipping included) on eBay worked
immediately without my even having to
read the instructions (Figure 1).

When plugging the sensor into the
PC’s USB port, the kernel immediately
recognizes it as a generic Human Inter-

face Device (HID) and automatically ap-
plies the “raw” hidraw driver. Figure 2
shows the log entries for this event gen-
erated by the kernel in /var/log/mes‑
sages.

The universal hidraw driver communi-
cates with various devices, without hav-
ing to know their characteristics. The bit
manipulation that’s needed for address-
ing the specifics of a USB temperature
sensor in this case runs over a driver in
userspace that the CPAN module Device:
:USB::PCSensor::HidTEMPer imple-
ments.

To read the temperature the sensor
measures, Listing 1 first uses the de‑
vice() method to find the device in the
USB tree [2]. Because only one sensor is
plugged in, only one device is listed;
with multiple sensors, the list_de‑
vices() method would return a list of

all devices detected. The internal
sensor of the device gets addressed
by the internal() method, and the
celsius() call returns the tempera-

ture value as a floating point number
with an accuracy of half a degree Cel-

sius. If you’re living in the US, you will
most certainly be more familiar with
temperatures measured in Fahrenheit,
which the sensor driver supports as well
via the celsius() method.

Behind the Scenes
A glance at the CPAN module source

code makes it evident that behind
the snazzy object-oriented

API that easily returns
the temperature

values, quite a lot of low-level communi-
cation is going on: Control bit values are
going back and forth, data buffers are
created and emptied, and checksums are
calculated. To identify the sensor, Linux
reads its VendorID (1130) and ProductID
(660C). That makes it inconsequential as
to which USB port or hub the user plugs
the device into. Under the hood, the
CPAN module Device::USB (or rather its
back end libusb C library) combs
through the USB tree until it finds the
device on the basis of the unique combi-
nation of vendor and product ID.

Meticulous Record
Keeping
Now for something more useful than a
simple temperature reader: The CPAN
module App::Daemon creates a daemon
process in Listing 2 that the admin can
start and stop with logtemp start and
logtemp stop. While running as a back-
ground process, it records the tempera-
tures every minute and logs them in the
/var/log/temper.log file (Figure 3). The
Log4perl framework prepends a time-
stamp as well.

The command sudo_me() in line 18 is
exported from the CPAN module
Sysadm::Install and ensures that the
script runs as superuser and, if that’s not
the case, restarts the script with a sudo
call. Root privileges are required so the
daemon can store the log data in /var/
log and the PID of the newly created
background process in /var/run/temper.
pid. Immediately thereafter, the
App::Daemon drops the root privileges

Mike Schilli works as a software engineer with
Yahoo! in Sunnyvale, California. He can be con-
tacted at mschilli@perlmeister.com. Mike’s
homepage can be found at http://​perlmeister.​
com.

 Mike Schilli

Features
Perl: RRDtool

November 2010	 Issue 120	 linux-magazine.com | Linuxpromagazine.com	62

 Monitoring room temperature

Within Bounds
In monitoring room temperatures with an affordable USB temperature sensor, the RRDtool

open source library offers Holt-Winters forecasting to differentiate normal from abnormal

deviations. By Mike Schilli

(for obvious security reasons) and con-
tinues as the user defined by the
$App::Daemon::as_user variable. For
this, the script extracts the user ID of the
invoking user from the SUDO_USER envi-
ronmental variable, courtesy of the sudo
command calling the script. Again, if
you want Fahrenheit values, change line
46 from celsius() to fahrenheit().

The daemonize() request in line 30 has
App::Daemon send the daemon into the
background, which is visible to the call-
ing user when the shell command-line
prompt reappears only a split second
after invoking the script. The user can
then use the tail ‑f /var/log/temper.
log command to follow along with the
daemon (Figure 3). For testing purposes,
the logtemp ‑X command option puts the
process into the foreground, with log
messages appearing on stderr.

Graphs Instead of
Numbers
Measurement data in logfiles unfortu-
nately rarely creates euphoria or leads to

salary bumps, so it’s no wonder graphi-
cal representation is the next step. The
rrdtool toolset’s rrdgraph program is es-
pecially useful in this context. If you
can’t stand its low-level syntax, the
CPAN module RRDTool::OO provides the
modern object-oriented one.

To convert the messages in the logfile,
which are written in a human-readable
time format (such as year/​month/​day
hour:minute:second) to the one RRDtool
customarily uses, Listing 3 uses the
CPAN module
DateTime::Format::Strptime and defines
the desired date pattern in line 22. Line
23 sets the time zone to that of the local
machine. The while loop starting in line
30 iterates through the logfile, and the
regex pattern on line 31 extracts the lines
with temperature entries and ignores
others, such as start and stop messages.

Listing 3 stores the discovered mea-
surement values in the array @data_
points accompanied by their time-
stamps. At line 53 RRDtool goes to work
by first defining a new round-robin data-

base with enough to cover five months
of measurements. To smooth out erratic
values, it collects five-minute-interval
measurement readings, as handled by
the step value in line 54.

The RRDtool data collector uses its
universal GAUGE data type for numerical
values. The for loop starting on line 79
feeds the values and their timestamps
(stored in the @data_points array) in the
RRD database, using the update method.
Calling the graph method on line 89
draws the graph (Figure 4). It also labels
the axes and scales the values accord-
ingly. Drawing a chart couldn’t possibly
be easier!

Watch for Disaster
The wavy nature of the graph naturally
reflects the normal fluctuations in daily
temperatures. However, to find out
whether an exception occurred because
of an unforeseen circumstance (the cat is
lying on the sensor or the building is on
fire), comparing the absolute values will
not work because the daily ups and
downs in temperature would trigger too
many false positives.

RRDtool therefore provides a so-called
“Aberrant Behavior Detection” feature
that uses four parameters to determine
“normal” temperature fluctuations and
compares the measured values against
them. It uses past measurements to
prognosticate the future. If a certain

Figure 1: The affordable TEMPer USB Thermometer sensor.

Figure 2: When the temperature sensor is plugged in, Ubuntu imme-

diately recognizes the new USB device and assigns it the hidraw

driver.

Figure 3: The thermo daemon records a tem-

perature reading every minute in the logfile.

01 �#!/usr/bin/perl ‑w

02 �#############################

03 �# celsius ‑ Read TEMPer

04 �# sensor temperature

05 �# Mike Schilli, 2010

06 �# (m@perlmeister.com)

07 �#############################

08 �use strict;

09 �use local::lib;

10 �use

11 � Device::USB::PCSensor::HidTEMPer;

12

�13 �my $temper =

14 � Device::USB::PCSensor::HidTEMPer

15 � ‑>new();

16

�17 �my $sensor =

18 � $temper‑>device();

19

�20 �if (

21 � defined $sensor‑>internal())

22 �{

23 � print "Temperature: ",

24 � $sensor‑>internal()

25 � ‑>celsius(),

26 � " C\n";

27 �}

 Listing 1: celsius

Features
Perl: RRDtool

linux-magazine.com | Linuxpromagazine.com	 Issue 120	 November 2010 63

number of predictions don’t match real-
ity within a given time frame based on
the algorithm, the system returns errors,
indicated in red (Figure 4).

Figure 4 shows the measurements in
black, the prognosis in green, and the
thresholds of what it considers “normal”
values in blue. The alarms will be dis-
played as red lines at the bottom of the
graph.

Unfortunately, the process does return
some false alarms (for example, at noon
of the third day), and it does not always
pick up real errors reliably either. The
administrator can always play with the
four knobs until the results become sat-
isfactory.

Of course, there is no guarantee that
the next day’s results won’t create fur-

ther alarms,, because adjusting the
knobs is really more magic than science.

Turning Knobs
The admin can adjust the parameters
alpha, beta, and gamma (each between 0
and 1) as well as the seasonal_period
for the time period in which repeated
temperature patterns are likely to occur,
such as from day to day.

Small parameter values (close to 0) for
alpha, beta, and gamma draw attention to
events that can date back a bit, whereas
values close to 1 base the prognosis on
more recently recorded values. Whereas
alpha controls the base values for the
graph, beta works with its slope. Gamma
determines the prognosis on the basis of
recurrences in the predetermined sea‑

sonal_period intervals. Listing 3 sets
alpha=>0.1, beta=>0.0035, gamma=>0.5,
and seasonal_period to the number of
data points in a day.

The system records an error if a num-
ber of values given in threshold falls
outside the “confidence band” (i.e., the
blue lines) during a time frame of the
given window_length. RRDtool automati-
cally determines the confidence band
from the parameters provided, and there
is no way to look under the hood or in-
fluence it directly.

A few eye-catching places occur in the
graph. RRDtool doesn’t offer any prog-
noses during the first two days because
it needs a few cycles to determine the ef-
fect of the “seasonal component” on the
prognosis. Curiously, the system ex-
pected the spike just before noon on the
fourth day to be repeated at the same
time the following days. Because it
didn’t happen, the system’s expectations
are lowered stepwise, until after a few
cycles, expectations are back to normal.

What rrdtool does under the hood
can be seen by turning on the Log4perl
framework: It is sleeping within RRD-
Tool::​OO and waits until the user acti-
vates it. Figure 5 shows what goes on in
RRDTool::OO, starting with the com-
mand to create the database, then selec-
tion of the update commands for logged
temperature values, and finally the graph
command that draws the actual graph.

RRDtool calls the Holt-Winters fore-
casting HWPREDICT and the expected sta-

01 �#!/usr/bin/perl ‑w

02 �#############################

03 �# logtemp ‑ Daemon logging

04 �# TEMPer readout

05 �# Mike Schilli, 2010

06 �# (m@perlmeister.com)

07 �#############################

08 �use strict;

09 �use local::lib;

10 �use

11 � Device::USB::PCSensor::HidTEMPer;

12 �use App::Daemon 0.10

13 � qw(daemonize);

14 �use Log::Log4perl qw(:easy);

15 �use Sysadm::Install qw(:all);

16 �use File::Basename;

17

�18 �sudo_me();

19

�20 �$ENV{SUDO_USER} ||=

21 � "mschilli";

22

�23 �$App::Daemon::logfile =

24 � "/var/log/temper.log";

25 �$App::Daemon::pidfile =

26 � "/var/run/temper.pid";

27 �$App::Daemon::as_user =

28 � $ENV{SUDO_USER};

29

�30 �daemonize();

31

�32 �while (1) {

33 � my $temper =

34 � Device::USB::PCSensor::HidTEMPer

35 � ‑>new();

36

�37 � my $sensor =

38 � $temper‑>device();

39

�40 � if (

41 � defined $sensor‑>internal()

42 �)

43 � {

44 � INFO "READ ",

45 � $sensor‑>internal()

46 � ‑>celsius();

47 � } else {

48 � ERROR

49 � "No reading available";

50 � }

51

�52 � sleep 60;

53 �}

 Listing 2: logtemp

Figure 4: The graph (black) with Holt-Winters forecasting, the prognosis (green) and its confi-

dence band (blue), and some resulting alarms (red).

Features
Perl: RRDtool

November 2010	 Issue 120	 linux-magazine.com | Linuxpromagazine.com	64

tistical deviation DEVPREDICT. Line 115 in Listing 3 defines
the deviation with the alias dev, which lines 132 and 139
each use to draw the confidence band. In typical RRDtool
RPM notation, predict,dev,2,*,+ stands for algebraic pre‑
dict + 2 * dev, because RRDtool allows for deviations
above and below up to twice the DEVPREDICT value above
and below HWPREDICT.

Installation
Because the required CPAN temperature sensor module is
not part of the Ubuntu package collection, any cleanly ori-
ented sys admin would not install it in /usr, but rather
would use local::lib to install it in the home directory. An
Ubuntu Lucid Lynx admin would use the following to in-
stall the local::lib module under /usr:

Figure 5: RRDtool commands for the graph in Figure 4 that the

RRDTool::OO script generates.

Figure 6: A new file in /etc/udev/rules.d directs the udev sys-

tem to provision the USB device with 666 permissions, which

allows anyone on the system to obtain temperature readings.

[1]	� TEMPer USB Thermometer: http://​www.​amazon.​com/​dp/​
B002VA813U

[2]	� Listings for the article: http://​www.​linux‑magazine.​com/​
Resources/​Article‑Code

[3]	� “Cool Projects Edition” by Kyle Rankin, Linux Journal
August 2010, pp. 32-34

[4]	� “Aberrant Behavior Detection in Time Series for Network
Service Monitoring” by Jake D. Brutlag: http://​www.​
usenix.​org/​events/​lisa00/​brutlag.​html

[5]	� “A Signal Analysis of Network Traffic Anomalies” by
Paul Barford, Jeffery Kline, David Plonka, and Amos Ron:
http://​pages.​cs.​wisc.​edu/​~pb/​paper_imw_02.​pdf

[6]	� “Traffic Anomaly Detection at Fine Time Scales with
Bayes Nets” by Jeff Kline, Sangnam Nam, Paul Barford,
David Plonka, and Amos Ron: http://​pages.​cs.​wisc.​edu/​
~pb/​icimp08_final.​pdf

[7]	� “libudev and Sysfs Tutorial” by Alan Ott: http://​www.​
signal11.​us/​oss/​udev/

 Info

Features
Perl: RRDtool

linux-magazine.com | Linuxpromagazine.com	 Issue 120	 November 2010 65

sudo apt‑get install liblocal‑lib‑perl

then run the CPAN shell with:

perl ‑Mlocal::lib ‑MCPAN ‑eshell

Typing

install Device::USB::PCSensor::HidTEMPer

within the CPAN shell starts the down-
load and installs the module in the perl5
subdirectory of the user’s home direc-
tory. The script in Listing 1 looks for the
module there, because of the use
local::lib instruction.

Without any additional tricks, only
root can read the sensor. However, un-
privileged users can be allowed to ex-

tract the temperature values if the set-
tings in Figure 6 are stored in a file
named 99‑tempsensor.rules in the /etc/
udev/rules.d directory.

Editing the rules file requires a restart
of the udev subsystem with sudo service
restart udev; after that, you’re all set to
start your new temperature measure-
ment daemon. nnn

001 �#!/usr/bin/perl ‑w

002 �#############################

003 �# rrdlog ‑ Graph Temperature

004 �# Data

005 �# Mike Schilli, 2010

006 �# (m@perlmeister.com)

007 �#############################

008 �use strict;

009 �use local::lib;

010 �use RRDTool::OO;

011 �use

012 � DateTime::Format::Strptime;

013

�014 �my $logfile = "temper.log";

015 �my @data_points = ();

016 �my $rrd_file = "data.rrd";

017

�018 �my $date_fmt =

019 � DateTime::Format::Strptime

020 � ‑>new(

021 � pattern =>

022 � "%Y/%m/%d %H:%M:%S",

023 � time_zone => "local",

024 �);

025

�026 � # Read logged temp data

027 �open FILE, "$logfile"

028 � or die

029 �"Cannot open $logfile ($!)";

030 �while (<FILE>) {

031 � if (/(.*) READ (.*)/) {

032 � my ($datestr, $temp) =

033 � ($1, $2);

034

�035 � my $dt =

036 � $date_fmt

037 � ‑>parse_datetime(

038 � $datestr);

039 � push @data_points,

040 � [$dt‑>epoch(), $temp];

041 � }

042 �}

043 �close FILE;

044

�045 � # Create RRD

046 �my $rrd = RRDTool::OO‑>new(

047 � file => $rrd_file,

048 � raise_error => 1,

049 �);

050

�051 �my $rows = 60 * 24 * 30;

052

�053 �$rrd‑>create(

054 � step => 60 * 5,

055 � data_source => {

056 � name => "temp",

057 � type => "GAUGE"

058 � },

059 � archive => {

060 � rows => $rows,

061 � cpoints => 1,

062 � cfunc => 'AVERAGE',

063 � },

064 � start =>

065 � $data_points[0]‑>[0] ‑ 60,

066 � hwpredict => {

067 � rows => $rows,

068 � alpha => 0.1,

069 � beta => 0.0035,

070 � gamma => 0.5,

071 � seasonal_period => 24 *

072 � 60 /

073 � 5,

074 � threshold => 14,

075 � window_length => 18,

076 � },

077 �);

078

�079 �for my $data_point (

080 � @data_points)

081 �{

082 � $rrd‑>update(

083 � time => $data_point‑>[0],

084 � value => $data_point‑>[1],

085 �);

086 �}

087

�088 � # Draw Graph

089 �$rrd‑>graph(

090 � image => "bounds.png",

091 � width => 1600,

092 � height => 800,

093 � start =>

094 � $data_points[0]‑>[0],

095 � end =>

096 � $data_points[‑1]‑>[0],

097 � draw => {

098 � type => "line",

099 � color => '000000',

100 � legend =>

101 � "Temperature over Time",

102 � thickness => 2,

103 � cfunc => 'AVERAGE',

104 � },

105 � draw => {

106 � type => "line",

107 � color => '00FF00',

108 � cfunc => 'HWPREDICT',

109 � name => 'predict',

110 � legend => 'hwpredict',

111 � },

112 � draw => {

113 � type => "hidden",

114 � cfunc => 'DEVPREDICT',

115 � name => 'dev',

116 � },

117 � draw => {

118 � type => "hidden",

119 � name => "failures",

120 � cfunc => 'FAILURES',

121 � },

122 � tick => {

123 � draw => "failures",

124 � color => '#FF0000',

125 � legend => "Failures",

126 � },

127 � draw => {

128 � type => "line",

129 � color => '0000FF',

130 � legend => "Upper Bound",

131 � cdef =>

132 � "predict,dev,2,*,+",

133 � },

134 � draw => {

135 � type => "line",

136 � color => '0000FF',

137 � legend => "Lower Bound",

138 � cdef =>

139 � "predict,dev,2,*,‑",

140 � },

141 �);

 Listing 3: rrdtemp

Features
Perl: RRDtool

November 2010	 Issue 120	 linux-magazine.com | Linuxpromagazine.com	66

