
I
nstead of the usual request/​re-
sponse game run by the standard
HTTP protocol, the WebSocket API
included in the HTML5 standard

gives standard browsers the option of
communicating bidirectionally over per-
sistent connections with the web server.

Once a regular HTML page has been
received by the browser, embedded
JavaScript can then open a WebSocket
connection to a special URL, using the

new “ws” scheme, as in ws://
server/path. The WebSocket

opener defines a call-
back that gets trig-

gered immediately
once the Web-
Socket server
sends a mes-
sage via the
newly
opened per-
sistent con-
nection.
In other

Mike Schilli works as a software engineer
with Yahoo! in Sunnyvale, California. He
can be contacted at mschilli@perl­
meister.com. Mike’s homepage can be
found at http://​perlmeister.​com.

 Mike Schilli

words, the browser application immedi-
ately responds to server signals without
needing to poll the server at regular in-
tervals, enabling web browsers to engage
in all kinds of real-time applications,
from online games to streaming logfiles.

Can My Browser Do It?
Not all web browsers support the new
WebSocket standard yet. To see if a par-
ticular browser has the protocol imple-
mented and activated, test to see if the
window.WebSocket DOM element exists
within a snippet of JavaScript. Or, even
without writing any code, use the Web-
Socket.org website [2], which offers a
tool that displays the browser’s capabili-
ties. Green indicates that your browser is
ready and a simple data echoing applica-
tion lets you type in characters that get
sent to the server via the socket and are
then played back by the server and redis-
played in your browser. For example,
Figures 1 and 2 show Firefox 4 with the
WebSocket API disabled, and then en-
abled. See the “Vulnerabilities” section
below to switch between the modes.

Currently, Firefox 4 and Google
Chrome at least have limited support for
the protocol; if you want a complete im-
plementation based on the latest stan-
dard, you have to install Firefox 6 (Au-
rora).

HTML5 adds “WebSockets,” allowing web clients to establish

permanent connections to web servers. A sample Perl web

application reveals in a browser in real time which pages

users are visiting on a busy web server. By Mike Schilli

Web server sockets

 Socket To Me

2

Features
Perl: WebSockets

SEPTEMBER 2011	 Issue 130	 linux-magazine.com | Linuxpromagazine.com	

WebSockets Tested
Figure 3 shows the WebSocket test appli-
cation cntdwn‑random of Listing 1 in ac-
tion. The browser receives descending
numeric values from the server at ran-
dom intervals. The server starts the
counter at 10, sends it to the rendered
browser page via a WebSocket, and then
goes to sleep for a random fraction of a
second before entering the next round.
When the countdown has reached 0, the
server sends a string that reads
“BOOM!” and terminates the WebSocket

communication.
The browser dis-
plays the incom-
ing server mes-
sages asynchro-
nously and in real time. They are pushed
down by the server and displayed in the
web page’s HTML immediately via a
JavaScript callback function, triggered
immediately when a server message ar-
rives, without the client having to ac-
tively poll the server.

To implement the test server, Listing 1
turns to CPAN’s Mojolicious::Lite frame-

Figure 3: The WebSocket test script performs

a countdown with values trickling down in

random intervals.

Figure 1: WebSocket.org confirming that Firefox 4 can’t communicate

via WebSockets without network.websocket.enabled set to true.

01 �#!/usr/local/bin/perl ‑w

02 �#############################

03 �# cntdown‑random

04 �# Mike Schilli, 2011

05 �# (m@perlmeister.com)

06 �#############################

07 �use strict;

08 �use Mojolicious::Lite;

09 �use Mojo::IOLoop;

10

�11 �my $listen =

12 � "http://localhost:8083";

13 �@ARGV = (

14 � qw(daemon ‑‑listen), $listen

15 �);

16

�17 �my $loop =

18 � Mojo::IOLoop‑>singleton();

19

�20 �#############################

21 �websocket "/myws" => sub {

22 �#############################

23 � my ($self) = @_;

24

�25 � my $timer_cb;

26 � my $counter = 10;

27

�28 � $timer_cb = sub {

29 � $self‑>send_message(

30 � "$counter");

31 � if ($counter‑‑ > 0) {

32 � $loop‑>timer(rand(1),

33 � $timer_cb);

34 � } else {

35 � $self‑>send_message(

36 � "BOOM!");

37 � }

38 � };

39

�40 � $timer_cb‑>();

41 �};

42

�43 �#############################

44 �get '/' => sub {

45 �#############################

46 � my ($self) = @_;

47

�48 � (my $ws_url = $listen) =~

49 � s/^http/ws/;

50 � $ws_url .= "/myws";

51 � $self‑>{stash}‑>{ws_url} =

52 � $ws_url;

53 �} => 'index';

54

�55 �app‑>start();

56

�57 �__DATA__

58 �@@ index.html.ep

59 �% layout 'default';

60 �Random counter:

61 �

62 �

63

�64 �@@ layouts/default.html.ep

65 �<!doctype html><html>

66 �<head>

67 �<title>Random Countdown

68 �</title>

69 �<script

70 � type="text/javascript">

71 � var socket = new WebSocket(

72 � "<%== $ws_url %>");

73 � socket.onmessage =

74 � function (msg) {

75 � document.getElementById(

76 � "counter").innerHTML =

77 � msg.data;

78 � };

79 �</script>

80 �</head>

81 �<body> <%== content %>

82 �</body>

83 �</html>

 Listing 1: cntdwn-random

Figure 2: If the user enables the configuration explained in the “Vul-

nerabilities” section, Firefox 4 uses the WebSocket API draft 76 legacy

protocol.

Features

3

Perl: WebSockets

linux-magazine.com | Linuxpromagazine.com	 Issue 130	 SEPTEMBER 2011

work introduced in the last issue, which
enables experimenting programmers to
put together a ready-to-run web applica-
tion in just a couple of minutes. Besides
normal web protocols like HTTP, it also
supports WebSockets and uses closures
to keep the status of each WebSocket cli-
ent in memory. As defined in line 12, it
opens a wireframe web server on port
8083 on the localhost, to which the
browser in Figure 3 has been pointed.

Mojolicious excels in setting up web
servers that respond to predefined URL
paths. The module Mojo::IOLoop used
in line 9 adds an event loop with a timer-
controlled hook framework. Playing
nicely with the event-based web server,
it allows an application to perform ran-
dom tasks within an active Mojolicious
process from time to time.

Instead of a new() constructor, line 18
uses the singleton() method, which re-
turns another reference to an event loop
if the loop was defined previously. This
is important because multiple, different
event loops would cancel out their pre-
decessors.

Perpetuum Mobile
In the test script, the callback stored in
$timer_cb in line 28 defines a function
that uses the send_message() Mojo
method to send the global countdown
value across the WebSocket to the
browser and then decrements the value
by one. After completing its task, line 32
calls the Mojo::IOLoop module’s timer()
method to schedule the next time the
callback will be called.

The first argument to timer() is

rand(1), which returns a floating-point
value between 0 and 1, defining the frac-
tion of a second after which the next call
will occur. The second argument,
$timer_cb holds a reference to the call-
back function itself, causing a self-per-
petuating loop calling the callback in ir-
regular intervals. To get the ball rolling
initially, line 40 issues the first call to the
callback.

The websocket command in line 21 de-
fines the jump target on the server for in-
coming WebSocket requests, in contrast
to get in line 44, which responds to GET
requests for the root path /. The GET re-
quest handler code in lines 46-53 con-
verts the given http:// URL into a ws://
URL for WebSocket requests by means of
a regular expression and adds the /myws
path at the end. It then stuffs it into the
HTML layout engine’s stash under the
key ws_url. To render the corresponding
HTML with the embedded WebSocket
URL, line 53 specifies 'index' to point to
the @@ index.html.ep template defined in
line 58 of the trailing __DATA__ area.

The HTML template contains some
text (Random Counter) and a font element
with an ID of counter. Although this will
possibly irritate CSS purists, all we really
want to do here is define some kind of
HTML element with a known ID that the
JavaScript code can then extract from
the DOM and update its content with the
current counter value.

JavaScript to Enterprise:
Come in, Please!
The 'default' layout reference in line 59
refers to the layout defined in lines 64

on, which creates
an orderly HTML
document from
previously defined
HTML snippets

and adds JavaScript code for WebSocket
communication. Line 71 creates a new
WebSocket object using the ws://​ URL cre-
ated previously. Once the WebSocket has
successfully contacted the server and
completed the necessary handshake
(Figure 4), the message sent by the
server to the browser via the WebSocket
later on creates a JavaScript event by the
name of socket.onmessage; its callback
function is set in line 73.

The data attribute of the message ob-
ject received by the callback contains the
text string that send_message() wrapped
up for it server side. As you would ex-
pect, this is the current counter value
from the countdown, and line 75 only
needs to look for the DOM element with
the counter ID and set its innerHTML attri-
bute to the counter value to display the
value. That’s all there is to it. If the user
now directs their browser to the http://​
localhost:8032 URL set in line 12, the
countdown starts to run.

Surfer Kibitzer
As a practical application, Listing 2
shoulder surfs active users of a website
and shows the pages in a browser win-
dow, along with the URL and the dis-
playing host, that surfers visit in real
time (Figure 5). The website owner
needs to install the script on the web
server, start the Mojolicious server there,
and then point his browser to the Mojoli-
cious URL. The browser then starts up-
dating its display with the web pages
currently being served. How does this
work?

The tail() function starting in line 91
of Listing 2 checks every second to see if
the web server’s access.log file contains
new data. After opening the access log
with Perl’s sysopen command in O_NON-
BLOCK mode, subsequent calls to sys‑

Figure 5: Surfer Kibitzer showing which surfer is currently accessing

which web page in the view window.

Figure 4: After the client has opened a WebSocket to the server, the

server can asynchronously send data to the client.

Browser

HTML
counter 3 JavaScript

WebSocket
new()

Server

ws://server/path

Counter=3

send_data(3)

Mike: The
last line of
“JavaScript
to Enter‑
prise” spec‑
ifies local‑
host:8032;
line 12
specifies
local‑
host:8083.
Which num‑
ber is cor‑
rect?? ‑rls

4

Features
Perl: WebSockets

SEPTEMBER 2011	 Issue 130	 linux-magazine.com | Linuxpromagazine.com	

read will return new data but won’t
block if no new data is available.

If the script discovers any new GET re-
quests, as shown in Figure 6, that point
to one of the HTML pages on the website
and do not originate with the script’s
own IP address, it bundles the requested
URL along with the IP address of the re-
quester (converted into a hostname) into
a JSON construct and sends it to the
browser’s WebSocket in line 66.

On the JavaScript end, the socket.on‑
message callback in line 150 unpacks the
JSON format by enclosing it in parenthe-
ses and executing it with JavaScript’s
eval() function. To update the browser
display, it then finds the HTML elements
with the IDs host, url, and pageview in
the HTML code (defined in lines 135-

140) and packs the data extracted from
JSON into the displayed fields.

Because the HTML iframe element in
line 138 gets updated with a URL from
the WebSocket, the spying browser will
display the HTML of the URL extracted
from the server’s access log earlier. At
the same time, the script updates the re-
quested URL as a displayed text string
and the resolved hostname of the re-
questing surfer at the top of the page.

This ultra-fast, asynchronous update,
which is initialized by the server, thus
lets you track who is watching what on
your server in real
time. To avoid
stressing the script
with large num-
bers of requests,

line 71 limits the access log inspection to
once every 5 seconds and just picks up
the first line that matches the require-
ments in lines 48-55: only GET requests,
to prevent unintended replays of data-
modifying POSTs; only HTML pages (if
you use a suffix other than .html, you
need to modify this); and no requests
from the spying browser’s own IP ad-
dress. The latter prevents sending the
Mojolicious server into a spin because
the spying browser’s requests also show
up in the web server’s access log. Also,
with the rate limiting explained previ-

001 �#!/usr/local/bin/perl ‑w

002 �#############################

003 �# apache‑peek

004 �# Mike Schilli, 2011

005 �# (m@perlmeister.com)

006 �#############################

007 �use strict;

008 �use Mojolicious::Lite;

009 �use ApacheLog::Parser

010 � qw(parse_line_to_hash);

011 �use Mojo::IOLoop;

012 �use POSIX;

013 �use Socket;

014 �use JSON qw(encode_json);

015

�016 �my $listen =

017 � "http://website.com:8083";

018 �@ARGV = (

019 � qw(daemon ‑‑listen), $listen

020 �);

021

�022 �my $base_url =

023 � "http://website.com";

024

�025 �my $file = "access.log";

026 �sysopen my $fh, "$file",

027 � O_NONBLOCK | O_RDONLY

028 � or die $!;

029

�030 �my $loop =

031 � Mojo::IOLoop‑>singleton();

032

�033 �#############################

034 �websocket "/myws" => sub {

035 �#############################

036 � my ($self) = @_;

037

�038 � my $timer_cb;

039 � $timer_cb = sub {

040 � for

041 � my $line (@{ tail($fh) })

042 � {

043 � my %fields =

044 � parse_line_to_hash(

045 � $line);

046

�047 � if (

048 � $fields{request} eq "GET"

049 � and $fields{file} =~

050 � /\.html?$/

051 � and

052

�053 � # skip our own requests

054 � $fields{client} ne

055 � $self‑>tx‑>remote_address

056 �)

057 � {

058 � my $url = $base_url

059 � . $fields{file};

060 � my $data = {

061 � url => $url,

062 � host => revlookup(

063 � $fields{client}

064 �),

065 � };

066 � $self‑>send_message(

067 � encode_json($data));

068 � last;

069 � }

070 � }

071 � $loop‑>timer(5, $timer_cb);

072 � };

073 � $timer_cb‑>();

074 �};

075

�076 �#############################

077 �get '/' => sub {

078 �#############################

079 � my ($self) = @_;

080

�081 � (my $ws_url = $listen) =~

082 � s/http/ws/;

083 � $ws_url .= "/myws";

084 � $self‑>{stash}‑>{ws_url} =

085 � $ws_url;

086 �} => 'index';

087

�088 �app‑>start();

089

�090 �#############################

091 �sub tail {

092 �#############################

093 � my ($fh) = @_;

094

�095 � my ($buf, $chunk, $result);

096

�097 � while ($result =

098 � sysread $fh, $chunk, 1024)

099 � {

100 � $buf .= $chunk;

101 � }

102

�103 � if (defined $result

104 � and defined $buf)

105 � {

 Listing 2: apache-peek

Figure 6: A request in the web server’s access logfile.

Mike: Should “initialized by the server” be “initiated by the server”?? ‑rls

Features
Perl: WebSockets

5linux-magazine.com | Linuxpromagazine.com	 Issue 130	 SEPTEMBER 2011

ously, the browser only updates the
URLs it displays every five seconds, no
matter how fast the client requests ar-
rive.

To analyze the web server’s access
logfile, the parse_line_to_hash function
courtesy of the ApacheLog::Parser CPAN
module called in line 44 parses each log-
file line passed into it and converts it
into a hash with the keys client (client
IP address), file (file path requested in
the URL), and so on. revlookup() called
in line 62 and defined in lines 117-129
uses reverse DNS to convert an IP ad-
dress into a hostname but keeps the
original IP in case this fails.

Vulnerabilities
The WebSockets implementation in Fire-
fox 4 and Google Chrome is based on
Draft Version 76 of the protocol, which
has a couple of vulnerabilities. Although

these only occur
in unencrypted
communication
and with poorly
programmed web
proxies, the end
user would be ex-
posed to attacks
on the real Internet.

The current version of Mojolicious
from CPAN (1.42) thus only supports the
modified version of the protocol based
on the IETF 08 specification. Firefox 4 or
Google Chrome don’t support this, but
Firefox 6 (Aurora) does. If you want to
test this month’s scripts with an older
browser, download the older Mojolicious
version 1.16 from CPAN; it was pro-
grammed with Draft 76 of the Web-
Socket protocol. Use on production sys-
tems poses a security risk.

Firefox 4 disables its own WebSockets
by default because of the obsolete imple-
mentation, and you need to set the Bool-
ean variables network.websocket.enabled
and network.websocket.override‑secu‑
rity‑block in the about:config dialog to
true to tell Firefox 4 to enable the feature
(Figures 7 and 8).

Installation
You can install the required CPAN mod-
ules, Mojolicious, ApacheLog::Parser,
and JSON with a CPAN shell. The

ApacheLog::Parser module might give
you some grief because it is based on
Time::Piece, whose test suite failed on
my Ubuntu system. The reason for this
is a year-old bug in interacting with
Test::Harness, which doesn’t impair the
module’s functionality but causes the
CPAN shell tests to fail. force install ig-
nores the failure and completes the in-
stallation.

WebSockets are still in their infancy,
and it will take some time for all of to-
day’s browsers to implement the current
version of the protocol. However, I can
imagine many practical applications for
browser applications communicating bi-
directionally with the server without
polling delays, especially in the gaming,
chat, or video fields. nnn

106 � chomp $buf;

107 � my @lines =

108 � map { s/\s+$//g; $_; }

109 � split /\n/, $buf;

110 � return \@lines;

111 � }

112

�113 � return [];

114 �}

115

�116 �#############################

117 �sub revlookup {

118 �#############################

119 � my ($ip) = @_;

120

�121 � my $host = (

122 � gethostbyaddr(

123 � inet_aton($ip), AF_INET

124 �)

125 �)[0];

126 � $host = $ip

127 � unless defined $host;

128 � return $host;

129 �}

130

�131 �__DATA__

132 �@@ index.html.ep

133 �% layout 'default';

134

�135 �Host: <em id="host">

136 �URL: <em id="url">

137

�138 �<iframe width=100%

139 � height=800 src=""

140 � id="pageview"></iframe>

141

�142 �@@ layouts/default.html.ep

143 �<!doctype html><html>

144 �<head><title>Apache Peek

145 � </title>

146 � <script

147 � type="text/javascript">

148 � var socket = new WebSocket(

149 � "<%== $ws_url %>");

150 � socket.onmessage =

151 � function (msg) {

152 � var data = eval("(" +

153 � msg.data + ")");

154 � document.getElementById(

155 � "host").innerHTML =

156 � data.host;

157 � document.getElementById(

158 � "url").innerHTML =

159 � data.url;

160 � document.getElementById(

161 � "pageview").setAttribute(

162 � "src", data.url);

163 � };

164 � </script>

165 � </head>

166 � <body> <%== content %>

167 � </body>

168 �</html>

 Listing 2: apache-peek (continued)

[1]	� Code for this article:
http://​www.​linux‑magazine.​com/​
Resources/​Article‑Code

[2]	� WebSocket test page,
http://​websocket.​org/​echo.​html

 Info

Figure 7: A new Firefox entry in about:config

activates the WebSocket API.

Figure 8: Users need to enable WebSockets explicitly in Firefox 4

because of security worries.

6

Features
Perl: WebSockets

SEPTEMBER 2011	 Issue 130	 linux-magazine.com | Linuxpromagazine.com	

