
binlinks script. The script then checks
all the entries to see if the required link
already exists in ~/bin and creates a link
if this is not the case. That binlinks itself
resides in a Git repository should be self-
explanatory. It uses the Sysadm::Install
CPAN module, just because of the mkd
function, which creates new directories
at arbitrary depths without further ado
and generates informative Log4perl out-
put to document the process.

Follow the Link
As you can see, many scripts that are
called now are actually symlinks. If a
symlink points to a file in another direc-
tory, developers will want to change into
that directory for further development
work. The lcd command, with the link
as a parameter, takes care of this (see
Figure 1).

Old-school Unix users will, of course,
know that a shell script can’t change the
user’s current directory. Scripts are run-
ning in subshells, and when they termi-
nates, there are no notable side effects
for whatever called it. For this reason,
lcd is defined as a Bash function in the .
bashrc startup file of the Bash shell:

function lcd () { cd `symlinkdir $1`; \

 pwd; ls; }

I
recently moved to a new developer
desktop and took that opportunity
not just to tidy up my overflowing
home directory, but to rebuild it

completely. Hundreds of partially obso-
lete helper scripts had accumulated over

the years. To introduce some kind of
order into this chaos, I decided to start
from scratch and install any script I re-
ally missed in my daily work – and in a
reproducible way, of course, to take the
pain out of the next move.

Repo Links
All of my scripts have moved to the sub-
directories of various Git repositories for
versioning and replication. To allow the
user to call the helpers without specify-
ing a path, symlinks from the bin path in
my home directory point to the actual
checked-in scripts. Another script, bin‑
links (Listing 1), maps the scripts
checked into the Git repository to links
in the user’s local bin directory in its
DATA area. For example, the logtemp
script, which I use to query my tempera-
ture sensor [2], stays in the articles Git
repository; whereas my handwritten re-
pository converter tool, cvs2git, is better
off in the experimental Schilli Labs

sandbox repository.
When a new script needs

to be added to the bin
path, the devel-

oper just needs
to append it

to the bin-
links DATA

area and
then

call
the

Mike Schilli works as a software engineer
with Yahoo! in Sunnyvale, California. He
can be contacted at mschilli@perl­
meister.com. Mike’s homepage can be
found at http://​perlmeister.​com.

 Mike Schilli

A bag of tricks for the productive Perl enthusiast

 Tricks and

Treats
If you are a frequent shell user who navigates, searches for text, or installs CPAN modules,

you will definitely appreciate these helper scripts and modules to take some typing off your

hands. By Mike Schilli

2

Features
Perl: Hacker’s Toolbox

October 2011	 Issue 131	 linux-magazine.com | Linuxpromagazine.com	

Bash lcd() function picks it up, changes
to the corresponding directory, outputs
the directory with pwd, and then calls ls
to list its entries.

Frugal CPAN Installer
Hardly a single Perl column does with-
out installing additional CPAN modules.
This is normally a short and painless
process thanks to a CPAN shell, which
you can call either as perl ‑MCPAN ‑es‑
hell or by using the cpan command that
accompanies moderately recent Perl dis-
tributions. However, because the CPAN
shell is not exactly frugal with its use of
resources, this process can quickly lead
to a developer’s account being shut
down by cheap hosting providers.

Figure 2 shows what happens on the
shared hosting provider DreamHost,
even before the CPAN shell can load the
desired module from CPAN. Allegedly, it
uses too much memory, and to avoid
other shared accounts suffering, Dream-
Host pulls the plug – a bit too early for
my liking.

This is where the CPAN module
App::cpanminus enters the scene. Figure
3 shows the terse output of this unim-
posing jack of all trades. It is so frugal in
its use of resources that even cheap host-
ing providers with their strict rules don’t
notice a strain on their resources and let
it proceed unencumbered.

Just like its bigger sibling CPAN.pm,
cpanminus can also handle local module

If somebody calls
lcd bin/cvs2git,
the Bash function
passes the bin/
cvs2git argument
to the symlinkdir
script and then
calls the cd com-
mand with the
printed directory.
Listing 2 shows
the implementa-
tion of symlinkdir.

The script uses
the readlink() sys-
tem call to follow
the link passed in
as parameter and
repeats this until
the result is no
longer a link. The
dirname() function
from the
File::Basename
module extracts
the directory from
the resulting path
and line 19 prints
it on standard out-
put, where the

01 �#!/usr/local/bin/perl ‑w

02 �#############################

03 �# binlinks ‑ Link git‑ver‑

04 �# sioned scripts to bin dir

05 �# Mike Schilli, 2011

06 �# (m@perlmeister.com)

07 �#############################

08 �use strict;

09 �use Log::Log4perl qw(:easy);

10 �use File::Basename;

11 �use Sysadm::Install qw(mkd);

12

�13 �Log::Log4perl‑>easy_init(

14 � $DEBUG);

15

�16 �my ($home) = glob "~";

17 �my $home_bin = "$home/bin";

18

�19 �while (<DATA>) {

20 � chomp;

21

�22 � my ($linkbase, $src) =

23 � split ' ', $_;

24

�25 � $src = "$home/$src";

26 � my $binpath =

27 � "$home_bin/$linkbase";

28

�29 � if (‑l $binpath) {

30 � DEBUG

31 � "$binpath already exists";

32 � next;

33 � } elsif (‑e $binpath) {

34 � ERROR

35 � "$binpath already exists,",

36 � " but not a link!";

37 � next;

38 � }

39

�40 � INFO

41 � "Linking $binpath ‑> $src";

42

�43 � symlink $src, $binpath

44 � or LOGDIE "Cannot link " .

45 � "$binpath‑>$src ($!)";

46 �}

47

�48 �__DATA__

49 �logtemp �git/articles/temper/eg/

logtemp

50 �cvs2git git/sandbox/cvs2git/cvs2git

 Listing 1: binlinks

Figure 1: The lcd function changes to the directory containing the

script to which a symlink points.

Figure 2: Too much for cheap hosters: Using a CPAN shell to install a

Perl module is tantamount to pulling the ripcord.

Figure 3: The frugal App::cpanminus CPAN module and its helper

script cpanm install the required module without any trouble.

01 �#!/usr/local/bin/perl ‑w

02 �use strict;

03 �use File::Basename;

04

�05 �my ($link) = @ARGV;

06

�07 �die "No link specified"

08 � unless $link;

09 �die

10 � "$link not a symbolic link"

11 � unless ‑l $link;

12

�13 �while (‑l $link) {

14 � $link = readlink($link);

15 �}

16

�17 �$link = dirname($link)

18 � unless ‑d $link;

19 �print "$link\n";

 Listing 2: symlinkdir

Features

3

Perl: Hacker’s Toolbox

linux-magazine.com | Linuxpromagazine.com	 Issue 131	 October 2011

are you placing the curly brackets – in
the if line or the line following it? Does
else directly follow the closing curly
bracket (“cuddled else”), or does it fol-
low after a line break? Do empty lines
occur between round brackets, separat-
ing function calls and their arguments?
And most importantly, what is the maxi-
mum line length, and when should the
formatter split long lines of code?

The perltidy manual page lists op-
tions for all these styles and describes
their effects. Listing 3 shows the configu-
ration for Perl listings in Linux Maga-
zine. The line width is a rather challeng-
ing 29 characters, and the formatter in-
dents lines in blocks by two characters
(‑i=2). If it splits a line, it indents the
rest of the line by two characters (‑ci=2)
in the next line. The else instructions
follow the closing curly bracket of the if
block directly, without a line break
(“cuddled else,” ‑ce). Because space is
at a premium in the magazine and the
editors don’t like to waste it, “vertical
tightness” is set to the maximum value,
‑vt=2. Using this option, the formatter
saves line breaks wherever it can. Fi-
nally, to save even more space, ‑nbbc
specifies that there are no empty lines in
front of full-line comments.

To tell the formatter to remodel a Perl
script using the defined options, devel-
opers need to call it as follows:

perltidy ‑pro=path/perltidyrc scriptname

If the script is syntactically correct, the
result is a scriptname.tdy file with the
right formatting. If you prefer, you can
do this

:nnoremap <buffer> <silent> X

:w<Enter>1GdG\

:.!perltidy ‑pro=path/perltidyrc

<%<Enter>

to create a vim command that handles
the formatting in the editor when you
press X. Now that’s what I call conve-
nient. nnn

locally installed modules will do the
trick, too.

Finding Text
Quite often, developers search for a spe-
cific text string they know is contained
somewhere within the various files of a
project’s source code. If the text “blabla”
is hiding somewhere in a file below the
current path, in the shell, you could run
the find command:

find . ‑type file ‑exec grep blabla {} U

 /dev/null \;

But this does mean a huge amount of
typing, and you really have to think – es-
pecially when it comes to the trick with
/dev/null, which also shows the file
names for single matches, and the
masked semicolon, which is strangely
necessary to tell the ‑exec option that the
command passed to it is now complete. I
used to use a findgrep script to launch a
recursive text search, but with ack [3],
users can simply load the powerful com-
mand from CPAN (cpanm ack), type

$ ack blabla

and be done with it. Having said this,
ack is fairly strict about file types. It will
only search files that look like text on
the basis of the name suffix; if you want
to search all files, you need to type ack
‑a blabla. If performance is important to
you, the often overlooked

$ git grep blabla

is a better choice in a Git repository. Be-
cause git saves the files it manages in an
index, it doesn’t need to walk the file
trees for a recursive search. This process
will win hands down against less sophis-
ticated approaches, especially for files
that are not yet in the operating system’s
buffer cache and that reside in deeply
nested folders.

Automatic Formatting
To make sure your homegrown Perl
scripts comply with existing standards,
well-behaved programmers will run
them through the perltidy beautifier
when they are done. The script is avail-
able as a CPAN module (cpanm perltidy)
and supports a plethora of configura-
tions that will match any style. Where

paths. To allow users with nonprivileged
accounts to install CPAN modules, and
to avoid messing up the package manag-
er’s well-organized system, experts
strongly recommend the use of local::lib
if your choice of Linux distribution
doesn’t include a Perl module you need
in its package repository.

Working as the administrator root (for
the last time), you can employ the pack-
age manager to install local::lib. On
Ubuntu, you would do:

sudo apt‑get install liblocal‑lib‑perl

If a hosting provider doesn’t permit root
access and does not allow you to install
the very useful local::lib, you can down-
load the tarball from CPAN, unpack it,
and type the following:

perl Makefile.PL ‑‑bootstrap

make install

Then, you can append the following to
your Bash shell startup file (typically
.bashrc):

eval $(perl ‑I$HOME/perl5/lib/perl5 U

 ‑Mlocal::lib)

This code will set the PERL_MM_OPT and
PERL5LIB variables so that any modules
you now install with a CPAN shell (or
cpanminus) end up in the perl5 directory
below the nonprivileged user’s home di-
rectory.

This happens when a user types make
install. At the same time, Perl scripts
that list use SomeModule in their code to
bind a Perl module will be able to find
them in the local path.

If a script (such as a cronjob) doesn’t
have access to these environment vari-
ables from .bashrc, an explicit use
local::lib entry inserted into the pro-
gram code before loading the required

[1]	� Listings for this article:
http://​www.​linux‑magazine.​com/​
Resources/​Article‑Code

[2]	� “RRDtool” by Michael Schilli, Linux
Magazine, November 2010, pg. 62

[3]	� “ack”: http://​betterthangrep.​com

 Info

01 �# �perltidy Options for Perl scripts
in Linux Magazine

02 �

03 �‑l=29 # line width

04 �‑i=2 # 2 cols indent

05 �‑ci=2 # 2 cols continuation indent

06 �‑ce # cuddled else

07 �‑vt=2 # vertical tightness

08 �‑nbbc # �no blank lines before
whole‑line comments

 Listing 3: perltidyrc

4

Features
Perl: Hacker’s Toolbox

October 2011	 Issue 131	 linux-magazine.com | Linuxpromagazine.com	

