
wget http://root:passwort@192.162.0.1

I quickly discovered that Tomato uses
JavaScript to update the fields in the dis­
play and that a simple web scraper like
the Perl WWW::Mechanize module just
downloads the JavaScript code instead
of the uptime data I was looking for.

To talk the page into displaying the
data correctly, you need a JavaScript en­
gine: The engine interprets the code and
updates the DOM (Document Object
Model) of the page being displayed in
the browser in line with the instructions
it finds. Basic screen scrapers will not do
this; they act like browsers with Java­
Script disabled and will not serve up the
goodies.

The Seventh Wonder of
the World
The CPAN WWW::Scripter module han­
dles the Herculean task of implementing
the required browser actions in Perl. In
combination with the WWW::Scripter::​
Plugin::Ajax plugin, the HTML::DOM
module providing the DOM interface,
and the Pure Perl ECMAScript (Java­
Script) Engine JE, it gives me all the
functions I need.

When you think about how many
DOM-specific browser differences exist
just between Internet Explorer and Fire­
fox, you can imagine how much work
went into these modules. Also, the DOM

module acts like another browser; dif­
ferences between its implementa­

tion and the desktop
browser used are in­
evitable otherwise.
Another approach to
implementing a
JavaScript-con­
trolled script client

N
o fewer than three venerable
Linksys routers push Ethernet
packets around in the Perlmeis­
ter Labs. The Tomato firmware

[1] has provided many years of reliable
service without a single glitch (Figure 1).

Because the Tomato admin website
supports all kinds of useful settings and
displays informative status data, I
thought it would be a good idea to write
a screen scraper that regularly retrieved
the data, dumped it into a database on
my home computer, and alerted me in
case of suspicious events.

Oh, No, Not JavaScript!
Oh, yes! When I attempted to grab the
Basic Auth protected page by doing this:

Mike Schilli works as a software engineer
with Yahoo! in Sunnyvale, California. He
can be contacted at mschilli@perl­
meister.com. Mike’s homepage can be
found at http://​perlmeister.​com.

 Mike Schilli

would be to use a browser remote con­
trol such as Selenium [2].

Listing 1 [3] starts by loading WWW::​
Scripter and then pulls in the Ajax
plugin, which is available separately on
CPAN, with the use_plugin() method.
The class is derived from WWW::​Mecha­
nize, and thus from LWP::​UserAgent, so
it supports the get method for grabbing
websites. Because the router prompts
you for a root password on HTTP access,
the script inherits and uses the creden‑
tials() method to provide the password.

Outsourcing the
Password
To avoid hard-coding the password into
the script, the slurp function slurps it
from pw.txt in the current directory. The
file is a one-liner with the password and
should be protected against unauthor­
ized read or write access. Of course, this
approach isn’t perfect from a security
point of view, but you have to hide the
key under the mat somewhere if you
want the script to run automatically
without the user typing the password
every time.

Engines Running
When get picks up the page from the
router’s web interface, it initially doesn’t
contain any data – but just the embed­
ded JavaScript code. The wait_for_tim‑
ers() call then starts the JavaScript en­
gine and lets it work with the page con­
tent. This would now block until the last

Building a screen scraper to outsmart JavaScript

 Every Little Bit
If an API for web information is not available, scripters often use Perl as a crowbar for screen

scraping. In this article, we show how to overcome obstacles posed by JavaScript.

By Michael Schilli

2

Features
Perl: Screen Scraper

DECEMBER 2011	 Issue 133	 linux-magazine.com | Linuxpromagazine.com	

then searches for the first HTML table
that coincidentally contains the required
data from Tomato’s bandwidth page.

During the test phase, when I didn’t
know which table contained what infor­
mation, the tables() method in the same
module helped me find out by returning
all the tables it found as objects. co‑
ords() tells you the position and nesting
details in the hierarchy, and rows() out­
puts the content page by page. The man­
page explains how this module works in
great detail.

Tomato displays the values in Kbps
(kilobits), but also adds a value for KBps

JavaScript timer in the code stopped run­
ning, which would take ages for many
websites. The max_wait parameter thus
tells the script not to wait for more than
one second. This delay is sufficient for
the router page to fill its dynamic fields.
The call to content() then returns the
updated HTML with the data.

Picking HTML Goodies
As you can see in Figure 3, the uptime
value is surrounded by a mess of HTML
tags, and you could extract it with regu­
lar expressions or with an HTML parser.
Listing 1 uses the HTML::​TreeBuilder::​
XPath XPath parser from CPAN, which is
probably the most convenient method.

The path expression starting in line 34
first descends to the “body” tag in the
hierarchy of the HTML document and –
thanks to the double slash – then
plumbs the depths for the tags specified
to the right.

A TR tag with the id attribute of “up­
time” is the target here; it includes a TD
tag with a class attribute of “content” as
shown in Figure 3. The findvalue ex­

tracts the hidden
text, and the script
just needs to output
the value on its stan­
dard output.

The Tomato admin
page with the cur­
rent bandwidth
usage statistics poses
a more dynamic
problem. The chart
shown in Figure 4 is
available in the
/bwm‑realtime.asp
path of the router

URL. The chart, which is created by
JavaScript, shows the fluctuations dur­
ing the last 24 hours. The table below
shows the current values (kilobits per
second) for received data (RX) and
transmitted data (TX). Besides the first
value for the current measurement, To­
mato lists peaks, mean values (Avg), and
the total number of bits transferred since
starting the measurement, which starts
when the page has been loaded.

The first time you load the page, all
values are zero; but the table starts to fill
up with interesting data in just a couple
of seconds. That’s why Listing 2 waits
for no less than five rounds in the
rounds() function call in line 27, in
which it runs the check_timers() func­
tion to tell the scripts to run the timers in
the JavaScript code. It then waits for one
second in line 28. After completing the
mandatory rounds, line 42 calls the call­
back passed into the rounds() function;
this is an empty shell for the trial rounds
in line 27, but the extract_bandwidth
function is defined in line 46 for the real
operations as of line 28.

The script uses
the CPAN HTML::​
TableExtract mod­
ule as the parser
for the informa­
tion hidden in the
HTML tables. In
line 52 its parse()
method accepts
the page’s HTML
code, which has
been modified by
JavaScript, and
creates a syntax
tree from it. The
first_table_
found() method

Figure 1: Tomato’s overview page lists the router uptime in days

and hours, among other information.

Figure 2: Simply extracting the website’s HTML source will not give

you the uptime.

01 �#!/usr/local/bin/perl ‑w

02 �#############################

03 �# tomato‑overview ‑ Scrape

04 �# simple JavaScript‑enabled

05 �# page

06 �# Mike Schilli, 2011

07 �# (m@perlmeister.com)

08 �#############################

09 �use strict;

10 �use WWW::Scripter;

11 �use Sysadm::Install qw(:all);

12 �use HTML::TreeBuilder::XPath;

13

�14 �my $w = new WWW::Scripter;

15 �$w‑>use_plugin('Ajax');

16

�17 �my $pw = slurp "pw.txt";

18 �chomp $pw;

19 �$w‑>credentials("root", $pw);

20 �$w‑>get(

21 � 'http://192.168.0.1');

22

�23 �$w‑>wait_for_timers(

24 � max_wait => 1);

25

�26 �my $tree =

27 � HTML::TreeBuilder::XPath

28 � ‑>new;

29

�30 �$tree‑>parse($w‑>content());

31

�32 �my $uptime =

33 � $tree‑>findvalue(

34 � '/html/body//' .

35 � 'tr[@id="uptime"]/' .

36 � 'td[@class="content"]'

37 �);

38

�39 �print "uptime: $uptime\n";

 Listing 1: tomato-overview

Figure 3: The JavaScript engine has filled out the uptime data after

running the JavaScript engine via WWW::Scripter.

Features

3

Perl: Screen Scraper

linux-magazine.com | Linuxpromagazine.com	 Issue 133	 DECEMBER 2011

64 pushes them as hashes with the keys
“avg” and “peak” into the “RX” or “TX”
keys of another hash.

To allow for easy machine-processing
of the script output, line 70 uses the Dump
method provided by the YAML module
loaded in the program header to print
the resulting hash. Figure 5 shows the
results at the command line. A post-pro­
cessing script can use the same module’s
Load method to load the hash into mem­
ory and work with it.

Installation
Besides the WWW::Mechanize web
scraper, the dynamic grabber scripts also
need the CPAN WWW::Scripter and
WWW::Scripter::Plugin::Ajax modules,
which you can install with a CPAN shell
in Ubuntu. The XPath parser used in
Listing 1 (HTML::TreeBuilder::XPath)
and the table parser used in Listing 2
(HTML::TableExtract) are also available
from CPAN.

Of course, you could use SSH for safer
communication with the Tomato router,
and you might even flash a new image
that provides a web API. But the tricks
shown here serve as a perfect example
for advanced screen scraping and can be
applied to virtually any interesting page
on the web.

Scraper hackers just have to make sure
that vacuuming off the data doesn’t con­
travene the provider’s TOS (Terms of
Service), because many providers pro­
hibit scraping. nnn

(kilobytes). Because
they differ only by a
constant factor, the
regex in the map in­
struction in line 62
filters the latter value
by truncating after
the first whitespace
character. The first
column in @cols is
thus either “RX” or
“TX” followed by the
current transfer rate.
The fourth and sixth
columns (array in­
dexes 3 and 5 in the
script) contain the
values for the aver­
age bandwidth and
the peak values. Line

Figure 4: The Tomato router regularly updates the current

bandwidth statistics using JavaScript.

01 �#!/usr/local/bin/perl ‑w

02 �#############################

03 �# tomato‑bandwith ‑ Java‑

04 �# Script‑enabled screen

05 �# scraper

06 �# Mike Schilli, 2011

07 �# (m@perlmeister.com)

08 �#############################

09 �use strict;

10 �use Sysadm::Install qw(:all);

11 �use WWW::Scripter;

12 �use HTML::TableExtract;

13 �use YAML qw(Dump);

14

�15 �my $w = new WWW::Scripter;

16 �$w‑>use_plugin('Ajax');

17

�18 �my $pw = slurp "pw.txt";

19 �chomp $pw;

20

�21 �$w‑>credentials("root", $pw);

22 �$w‑>get(

23 � 'http://192.168.0.1/' .

24 � 'bwm‑realtime.asp'

25 �);

26

�27 �rounds($w, 5, sub { });

28 �rounds($w, 1,

29 � \&extract_bandwidth);

30

�31 �#############################

32 �sub rounds {

33 �#############################

34 � my ($w, $rounds, $callback)

35 � = @_;

36

�37 � for (1 .. $rounds) {

38 � $w‑>check_timers();

39 � sleep(1);

40 � }

41

�42 � $callback‑>($w‑>content);

43 �}

44

�45 �#############################

46 �sub extract_bandwidth {

47 �#############################

48 � my ($html) = @_;

49

�50 � my $te =

51 � HTML::TableExtract‑>new();

52 � $te‑>parse($html);

53

�54 � my $ts =

55 � $te‑>first_table_found();

56

�57 � my %bw = ();

58

�59 � foreach my $row ($ts‑>rows)

60 � {

61 � my @cols =

62 � map { /(\S+)/ } @$row;

63

�64 � $bw{ $cols[0] } = {

65 � avg => $cols[3],

66 � peak => $cols[5],

67 � };

68 � }

69

�70 � print Dump(\%bw);

71 �}

 Listing 2: tomato-bandwidth

Figure 5: WWW::Scripter slurping information

from a JavaScript-based website.

[1]	� Tomato:
http://​www.​polarcloud.​com/​tomato

[2]	� Selenium: http://​seleniumhq.​org/

[3]	� Listings for this article:
http://www.linux-magazine.com/Re­
sources/Article-Code

 Info

4

Features
Perl: Screen Scraper

DECEMBER 2011	 Issue 133	 linux-magazine.com | Linuxpromagazine.com	

