
notes in “notebooks,” which in turn can
be organized in subfolders known as
“stacks.”

Evernote’s unique selling point is con-
tinuous and unobtrusive synchroniza-
tion between the devices involved (Fig-
ure 2). A change that you make on the
desktop in your browser is replicated
within a couple of seconds in the
browser running on your laptop, assum-
ing it is also logged in to your Evernote
account. And, the Evernote app even
stores the data locally on a MacBook or
on mobile devices such as the iPad, thus
supporting offline operation.

The simple structuring model used in
Evernote invites inventive tinkerers to
glue together customized productivity
tools based on the rudimentary design
elements. Some users report [3] that
they have set up calendar functionality
by putting dates into note subjects so
Evernote will display them sorted by title
– now they can organize their time in a
“Getting Things Done” approach [4].

Figure 1 shows the Evernote notes I
took while working on this article. I
found a sample application for the Ever-
note API with the Thrift framework on
Stackoverflow.com and quickly archived
it with the Evernote Web Clipper as the
entry point for my research. I also found
a PDF with a whitepaper on the Thrift
framework and a couple of Perl exam-
ples on Apache.org. Armed with this col-
lection, I could easily answer questions
later by referring to the clipped texts or

I
deas often come to me in the
strangest places – for example, on
the train or in the shower. Typically,
these ideas quickly disappear if I

don’t jot them down right away. But, in-
stead of scribbling ideas on sticky notes,
today’s creative users capture their scrib-
blings with distributed digital applica-
tions, which protect your data and allow
you to search heaps of documents in a
matter of seconds.

Needle in a Haystack
Evernote is one such commercial appli-
cation. It offers a basic version that is
free for moderate use [2] and comes
with a browser interface and virtual

notebook apps for mobile devices,
such as the iPhone or iPad.

Notes, in Evernote’s sense
of the word, can be for-

matted text with im-
ages, audio files,

or screenshots of
websites that

you grab and
paste in

(Figure 1).
Users

group
their

Mike Schilli works as a software engineer
with Yahoo! in Sunnyvale, California. He
can be contacted at mschilli@perl­
meister.com. Mike’s homepage can be
found at http://​perlmeister.​com.

 Mike Schilli

Evernote productivity tool API

 Remember This
Evernote, a highly structured, digital notepad quickly replicates ideas jotted down and web

pages captured to different locations and devices. An API supports program-controlled

access via Facebook’s Thrift library. We provide a how-to in Perl. By Mike Schilli

2

Features
Perl: Evernote

February 2012	 Issue 135	 linux-magazine.com | Linuxpromagazine.com	

by accessing the web links that I had
stored.

API Replaces GUI
Sometimes you don’t want to use a GUI
to make a note of your good ideas,
which is what prompted me to look for a
command-line tool. Fortunately, Ever-
note offers a web API to its service and
uses Facebook’s Thrift protocol to han-
dle communications between clients and
the server [5]. This decision probably
was made for performance reasons be-
cause the binary protocol is leaner than
communication pushing XML objects
back and forth, especially for images.

A Lean Format
As Figure 3 shows, communicating with
Thrift requires describing the data struc-
tures exchanged between client and
server in the easily readable Thrift for-
mat in a .thrift file. The Thrift compiler
then references the file to create library
functions for a number of programming
languages, from C++ to Java, and includ-
ing scripting languages such as Perl,
Ruby, Python, PHP, and JavaScript, as
well as more exotic languages such as
Erlang. This abstraction layer protects
the application programmer from the
headaches of reinventing cross-platform
data transfers for every new project.

An example of using Thrift in Listing 1
shows the data structures and service
definitions in image_process.thrift for a
server that rotates image files through 90
degrees. The client sends the binary data
of a JPG file to the server, and the latter
uses the convert program from the Im-
ageMagick package to perform the rota-
tion and send the results back to the cli-
ent, again in binary format. The client
stores the JPG data on the local disk and
notifies the user of the successful con-
version or outputs an error message.

Compiler Writes Code
Thrift only supports a few data types,
but they are powerful and portable. Be-
sides simple 32- or 64-bit integers, users
can pack data in structs or use maps
similar to Perl’s hash types. Listing 1 de-
fines a Rotation structure that accepts an
integer for the desired angle of rotation
and a string with the binary data of the
image to rotate. The Rotator service de-
fined in line 12 defines the rotate()
method, which expects the Rotation

Figure 1: Web clippings stored in Evernote notebooks while I was writing this article.

Figure 2: Evernote synchronizes the stored information seamlessly between various portable

devices – with an iPad in this case.

Figure 3: The Thrift compiler generates Perl code from the Thrift definition; the code is used by

the client and the server in this application.

Features

3

Perl: Evernote

linux-magazine.com | Linuxpromagazine.com	 Issue 135	 February 2012

ing the error texts they contain. After
opening the transport in line 39, the cli-
ent loads the image file specified at the
command line from the filesystem by
running slurp in the Sysadm::Install
module from CPAN.

The image_process::Rotation type ob-
ject instantiated in line 46 uses the
image() and angle() accessors to put to-
gether the data structure to transfer. The
only thing left is to call the rotate
method with the Rotation structure in
line 51 and snap up the results in the
string returned by the server. The
blurt() function, also courtesy of the
CPAN Sysadm::Install module, then
writes the rotated image data to a new
file that uses a file name starting with
rotated‑*.

The corresponding server in Listing 3
defines the RotateHandler package for
handling the client requests; it is based
on the auto-generated image_process::​
RotatorIf class. In its rotate() method,
which it runs thanks to Thrift magic
when the client uses rotate() to send a
request, the server creates two tempo-
rary files, extracts the image data from
the rotation object passed to it, and
pushes the bytes into the first file.

The tap command issued in line 44
runs the ImageMagick convert utility
with the ‑rotate option, which writes
the rotated resulting file to the second
temporary file. If this fails, line 51 creates

structure described above as its enumer-
ated first parameter and returns a string
with the modified image data to the cli-
ent.

Thrift throws exceptions if something
goes wrong. Line 8 defines an exception
of the type Failed, which contains a
string named why with an explanation of
what went wrong. If you download the
Thrift distribution [6] and compile it
using sh ./configure and make, you will
have an executable by the name of
thrift. This is the Thrift compiler, which
turns Thrift files into glue code in the de-
sired target language. If the build fails
because you are missing some packages
for the more exotic languages, you can
disable them using the configure ‑‑dis‑
able‑xxx option. The following com-
mand line

thrift ‑r ‑‑gen perl image_process.thrift

creates the Perl glue that you need for a
straightforward exchange of data be-

tween the client and the server. The gen-
erated files are located in the gen‑perl/
image_process subdirectory.

The client in Listing 2 loads the result-
ing Thrift wrapper in line 17 and then
defines a communication channel via a
Unix socket on port 9001 of localhost,
on which the server will listen later. The
utility modules Thrift::Socket, Thrift::​
BufferedTransport, and Thrift::​Binary-
Protocol, which the client pulls in to set
up the communication channel, are in-
cluded in the Thrift distribution’s perl/
lib directory.

Line 31 instantiates a RotatorClient
object using the Thrift data definition
shown before; the object’s Perl code is
also auto-generated by thrift.

Thrift Throws Exceptions
The eval block in line 38 captures any
exceptions that might occur while talk-
ing to the server, and the subsequent test
in the if clause of line 59 prints any ex-
ception objects from the server, includ-

01 �namespace perl image_process

02

�03 �struct Rotation {

04 � 1: i32 angle,

05 � 2: string image,

06 �}

07

�08 �exception Failed {

09 � 1: string why

10 �}

11

�12 �service Rotator {

13 � string rotate(1:Rotation r)

14 � throws (1:Failed oops)

15 �}

 Listing 1: image_process.thrift

01 �#!/usr/local/bin/perl ‑w

02 �#############################

03 �# rotate‑client

04 �# Mike Schilli, 2012

05 �# (m@perlmeister.com)

06 �#############################

07 �use strict;

08 �use Sysadm::Install

09 � qw(slurp blurt);

10 �use Thrift;

11 �use Thrift::BinaryProtocol;

12 �use Thrift::Socket;

13 �use

14 � Thrift::BufferedTransport;

15

�16 �use lib 'gen‑perl';

17 �use image_process::Rotator;

18

�19 �my $socket =

20 � Thrift::Socket‑>new(

21 � "localhost", 9001);

22

�23 �my $transport =

24 � Thrift::BufferedTransport

25 � ‑>new($socket, 1024, 1024);

26

�27 �my $protocol =

28 � Thrift::BinaryProtocol

29 � ‑>new($transport);

30 �my $client =

31 � image_process::RotatorClient

32 � ‑>new($protocol);

33

�34 �my ($image) = @ARGV;

35 �die "usage: $0 image"

36 � if !defined $image;

37

�38 �eval {

39 � $transport‑>open();

40

�41 � my $image_data =

42 � slurp $image;

43

�44 � my $action =

45 � image_process::Rotation

46 � ‑>new();

47 � $action‑>image($image_data);

48 � $action‑>angle(90);

49

�50 � my $rotated_image_data =

51 � $client‑>rotate($action);

52

�53 � blurt $rotated_image_data,

54 � "rotated‑$image";

55

�56 � $transport‑>close();

57 �};

58

�59 �if ($@ =~ m/image_process/

60 � and exists $@‑>{why})

61 �{

62 � die $@‑>{why};

63 �} elsif ($@) {

64 � die $@;

65 �}

 Listing 2: rotate-client

4

Features
Perl: Evernote

February 2012	 Issue 135	 linux-magazine.com | Linuxpromagazine.com	

an exception object, which is then
thrown in line 53. Thrift magic picks up
the exception and transfers it to the cli-
ent, which throws it again. The rotate()
method returns the image data in line
56. It is then picked up by the Thrift
layer, wrapped up, and handed over to

the client without the application logic
having to lift a finger.

The main program beginning in line
60 simply uses predefined Thrift mod-
ules and calls Thrift::ForkingServer to
launch a server that listens for client re-
quests on port 9001 and forks a parallel
process each time to handle an incoming
request. After launching the server in a
separate terminal, you can type the fol-
lowing client side:

./rotate‑client image.jpg

After a short wait, the command comes
back and drops a file named rotated‑im‑
age.jpg into your current directory. Fol-
lowing Unix tradition, no output is gen-
erated if all goes well.

Notebook API
To address the Evernote API that I men-
tioned previously with the Thrift frame-
work, developers first need to pick up an
API key [2]. Because the new utility is a
command-line script and not a web ap-
plication, you need to select Client Appli-
cation (Figure 4). You are then issued a

“Consumer Key” and a “Consumer Se-
cret” and can then play around with
them on sandbox.evernote.com. You can
go live on evernote.com after completing
your tests and submitting a request to
Evernote, which usually gets approved
within a couple of hours.

The Evernote Developer site also has a
link to an SDK in ZIP format that con-
tains many language modules, including
a prebuilt Thrift wrapper for Perl. To
convert the Thrift definitions of the Ever-
note data structures into Perl code using
thrift, you need to do:

thrift ‑r ‑‑gen perl evernote‑api‑1.19/U

 thrift/UserStore.thrift

thrift ‑r ‑‑gen perl evernote‑api‑1.19/U

 thrift/NoteStore.thrift

assuming that you unpacked the SDK in
evernote‑api‑1.19. The auto-generated
.pm files are then stored in gen‑perl
below your current working directory.

Upgrading
Unfortunately, Thrift uses the obsolete
new Class() notation to generate the Perl

01 �#!/usr/local/bin/perl ‑w

02 �#############################

03 �# rotate‑server

04 �# Mike Schilli, 2012

05 �# (m@perlmeister.com)

06 �#############################

07 �use strict;

08 �use Thrift::Socket;

09 �use Thrift::Server;

10

�11 �use lib 'gen‑perl';

12 �use image_process::Rotator;

13

�14 �#############################

15 �package RotateHandler;

16 �#############################

17 �use base

18 � qw(image_process::RotatorIf);

19 �use Sysadm::Install

20 � qw(slurp blurt tap);

21 �use File::Temp qw(tempfile);

22

�23 �#############################

24 �sub new {

25 �#############################

26 � my ($class) = @_;

27

�28 � return bless {}, $class;

29 �}

30

�31 �#############################

32 �sub rotate {

33 �#############################

34 � my ($self, $rotation) = @_;

35

�36 � my ($fh1, $infile) =

37 � tempfile(UNLINK => 1);

38 � my ($fh2, $outfile) =

39 � tempfile(UNLINK => 1);

40

�41 � blurt $rotation‑>{image},

42 � $infile;

43 � my ($stdout, $stderr, $rc) =

44 � tap "convert", "‑rotate",

45 � $rotation‑>{angle},

46 � $infile, $outfile;

47

�48 � if ($rc != 0) {

49 � my $x =

50 � image_process::Failed

51 � ‑>new();

52 � $x‑>why($stderr);

53 � die $x;

54 � }

55

�56 � return slurp $outfile;

57 �}

58

�59 �#############################

60 �package main;

61 �#############################

62 �use Log::Log4perl qw(:easy);

63 �Log::Log4perl‑>easy_init(

64 � $DEBUG);

65

�66 �my $port = 9001;

67 �my $handler =

68 � RotateHandler‑>new();

69 �my $processor =

70 � image_process::RotatorProcessor

71 � ‑>new($handler);

72 �my $serversocket =

73 � Thrift::ServerSocket‑>new(

74 � $port);

75 �my $forkingserver =

76 � Thrift::ForkingServer‑>new(

77 � $processor, $serversocket);

78

�79 �DEBUG

80 �"Server starting on port $port";

81 �$forkingserver‑>serve();

 Listing 3: rotate-server

Figure 4: Developers can pick up the required

API key from the Evernote Developer site.

Features
Perl: Evernote

5linux-magazine.com | Linuxpromagazine.com	 Issue 135	 February 2012

code, and the Perl version on my lab ma-
chine, perl-5.10.1, wouldn’t swallow it.
I did this to solve the problem:

find gen‑perl ‑name '*.pm' \

 ‑exec perl ‑p ‑i ‑e \

 's/\bnew (.*?)\(/$1‑>new(/g;' {} \;

This command line rummages through
all the auto-generated .pm files and re-
places the obsolete syntax with the more
common Class‑>new() format. The script
in Listing 4 should work without any
trouble now. The access credentials are
given in lines 18 through 21; you will
want to store them elsewhere for secu-
rity reasons in a production script – pref-
erably in an encrypted password safe.

Still Compatible?
Line 19 expects a single command-line
argument as the note title; subjects with
more than one word need to be quoted:

evernote‑add U

 "Don't forget to buy the milk"

The script contacts the Evernote server,
creates a new note with the title “Don’t
forget to buy the milk,” leaves the body
empty, and inserts the note into a note-
book by the name of “Inbox” that I cre-
ated previously (Figure 5).

In contrast to the image rotation test
client created before, the script uses
Thrift::HttpClient to communicate with
the Evernote website via HTTP. The
Thrift glue defines EDAMUserStore::​User‑
StoreClient, and Listing 4 instantiates
this client object for user authentication
on Evernote in line 38. The checkVersion
method called in line 42 uses the EDAM_
VERSION_MAJOR and EDAM_VERSION_MINOR
constants from the auto-generated code
to check to see whether the SDK version
is still compatible with the Evernote
website.

EDAM stands for “Evernote Data Ac-
cess and Management” and provides
two different communication classes for
interaction with the Evernote service.
EDAMUserStore::UserStoreClient helps to
authenticate the user with their user
name, the password, the consumer key,
and the consumer secret. If the Evernote
server accepts this combination, it re-
turns an authorization token, which the
application can then use for a limited pe-
riod of time for requests with the

01 �#!/usr/local/bin/perl ‑w

02 �###################################
########

03 �# en‑add ‑ Add a note to Evernote

04 �# Mike Schilli, 2012 (m@
perlmeister.com)

05 �###################################
########

06 �use strict;

07 �use Thrift;

08 �use Thrift::HttpClient;

09 �use Thrift::BinaryProtocol;

10

�11 �use lib 'gen‑perl';

12 �use EDAMUserStore::Constants;

13 �use EDAMUserStore::UserStore;

14 �use EDAMNoteStore::NoteStore;

15 �use EDAMErrors::Types;

16 �use EDAMTypes::Types;

17

�18 �my $username =
"perlsnapshot";

19 �my $password = "*******";

20 �my $consumer_key =
"perlsnapshot";

21 �my $consumer_secret =
"****************";

22

�23 �my($message) = @ARGV;

24 �die "usage: $0 note" if !defined
$message;

25

�26 �my $evernote_host = "evernote.com";

27 �my $user_store_uri =

28 � "https://$evernote_host/edam/
user";

29 �my $note_store_uri_base =

30 � "https://$evernote_host/edam/
note/";

31

�32 �my $http_client =

33 � Thrift::HttpClient‑>new($user_
store_uri);

34 �my $protocol =
Thrift::BinaryProtocol‑>new(

35 � $http_client);

36

�37 �my $client =

38 � EDAMUserStore::UserStoreClient‑>n
ew(

39 � $protocol);

40

�41 �my $version_ok =

42 � $client‑>checkVersion(
"perlsnapshot", 1,

43 � 19);

44

�45 �if (!$version_ok) {

46 � die "Version not ok";

47 �}

48

�49 �my $result =

50 � $client‑>authenticate($username,

51 � $password, $consumer_key,

52 � $consumer_secret);

53

�54 �my $user = $result‑>user();

55

�56 �my $note_store_uri =

57 � $note_store_uri_base .
$user‑>shardId();

58

�59 �my $note_store_client =

60 � Thrift::HttpClient‑>new($note_
store_uri);

61

�62 �my $note_store_protocol =

63 � Thrift::BinaryProtocol‑>new(

64 � $note_store_client);

65

�66 �my $note_store =

67 � EDAMNoteStore::NoteStoreClient‑>n
ew(

68 � $note_store_protocol);

69

�70 �my $notebooks =

71 � $note_store‑>listNotebooks(

72 � $result‑>authenticationToken()
);

73

�74 �my $inbox_guid;

75

�76 �for my $notebook (@$notebooks) {

77 � if ($notebook‑>name() eq "Inbox"
) {

78 � $inbox_guid = $notebook‑>guid();

79 � last;

80 � }

81 �}

82

�83 �if (!defined $inbox_guid) {

84 � die "No Inbox notebook found";

85 �}

86

�87 �my $note = EDAMTypes::Note‑>new();

88 �$note‑>title($message);

89 �$note‑>content();

90

�91 �my $created =

92 � $note_store‑>createNote(

93 � $result‑>authenticationToken(),
$note);

94

�95 � # move new note to "Inbox"

96 �$note_store‑>copyNote(

97 � $result‑>authenticationToken(),

98 � $created‑>guid(), $inbox_guid);

 Listing 4: evernote-add

Mike:

Listing 4 has not been "modified" to fit
our column width. -rls

6

Features
Perl: Evernote

February 2012	 Issue 135	 linux-magazine.com | Linuxpromagazine.com	

the previously determined Inbox note-
book.

Unlimited Versatility
Inventive users can whip up many other
practical applications with the Evernote
API. The Evernote app lets users export
individual notebooks only, so it might be
useful to create a backup script that
works its way through your notebooks,
extracting the content of the notes and
storing the results in an XML-formatted
backup file. If you accidentally delete a
note in Evernote or mangle it beyond
recognition, the free version won’t let
you recover an older version – so you’ll
be able to recover from mistakes on the
cheap with this trick. If you use Evernote
every day, you will definitely appreciate
an intelligent approach to saving your
brilliant ideas for posterity. nnn

EDAMNoteStore::NoteStoreClient. The lat-
ter is used for browsing and making
modifications to the user’s Evernote
notepad.

If successful, the authenticate()
method called in line 50 returns an ob-
ject whose user() method provides a
user object. The user object’s shardId()
method returns the user partition on
Evernote. The user is assigned to the
partition and has to append its short
form to the basic URL of the web API
when submitting requests. The authenti‑
cationToken() method returns the token
that the application needs to submit
along with any requests.

Browsing Notes
Line 71 runs listNotebooks() against the
Evernote server; this command returns
the names of all of the notebooks in the
user’s account. The server returns a ref-
erence to a Perl array, which the for loop
in lines 76-81 iterates against. Each note-
book object supplies the notebook name
by calling the name() method. A unique
ID to reference the notebook later is pro-

vided by guid(); it is required later to
dump any new notes into it.

Line 77 now checks for every listed
notebook if its name is "Inbox". Then, it
interrupts the loop after storing the
GUID for "Inbox" in the $inbox_guid vari-
able. Line 87 creates a new note object
with the title specified on the command
line, simply by calling the EDAMTypes::​
Note class constructor and then setting
the title appropriately via the title ac-
cessor. The call to content() intention-
ally leaves the content of the note empty.

The NoteStoreClient object’s create
Note() method sends the new note along
with the authentication token to the
server in line 92. If everything works out
okay, the server returns a note object in
the $created variable; its guid() method
returns the GUID of the newly created
note.

To make sure the new note ends up in
the Inbox notebook, as shown in Figure
5, line 96 needs to send it there by using
the copyNote() method and specifying
the authentication token, the current
GUID of the new note, and the GUID of

Figure 5: The note injected by the Perl script sitting in the Inbox folder.

[1]	� Listings for this article:
http://​www.​linuxpromagazine.​com/​
Resources/​Article-Code

[2]	� Evernote: http://​evernote.​com

[3]	� “9 Ways I Use Evernote” by David
Pierce: http://​www.​digitizd.​com/​2009/​
04/​23/​9‑ways‑i‑use‑evernote/

[4]	� Allen, David, Getting Things Done:
The Art of Stress-Free Productivity.
Penguin, 2002

[5]	� Thrift: Scalable Cross-Language Ser-
vices Implementation: http://​thrift.​
apache.​org/​static/​thrift‑20070401.​pdf

[6]	� Thrift Project: http://​thrift.​apache.​org/

 Info

1/3 ad
with bleed

Layout:
Info box
needs to
be re-
aligned.
Thnx. -rls

Features
Perl: Evernote

7linux-magazine.com | Linuxpromagazine.com	 Issue 135	 February 2012

